时间:2017-03-02 10:41:52
1、计算题 (14分)如图12所示,匀强电场区域和匀强磁场区域是紧邻的,且宽度相等均为d,电场方向在纸平面内竖直向下,而磁场方向垂直于纸面向里,一带正电的粒子从O点以速度v0沿垂直电场方向进入电场,从A点出电场进入磁场,离开电场时带电粒子在电场方向的偏转位移为电场宽度的一半,当粒子从磁场右边界上C点穿出磁场时速度方向与进入电场O点时的速度方向一致,已知d、v0(带电粒子重力不计),求:
(1)粒子从C点穿出磁场时的速度大小v;
(2)电场强度E和磁感应强度B的比值.
2、计算题 有一个带正电的小球,质量为m、电量为q,静止在固定的绝缘支架上.现设法给小球一个瞬时的初速度υ0使小求水平飞出,飞出时小球的电量没有改变.同一竖直面内,有一个竖直固定放置的圆环(圆环平面保持水平),环的直径略大于小球直径,如图所示.要使小球能准确进入圆环,可在空间分布匀强电场或匀强磁场(匀强电场和匀强磁场可单独存在,也可同时存在),请设计两种分布方式,并求出:
(1)相应的电场强度E或磁感应强度B的大小和方向;
(2)相应的小球到圆环的时间t .
(若加匀强电场,则匀强电场限制在竖直面内;若加匀强磁场,则匀强磁场限制在垂直纸面情况.已知υ0>,小球受重力不能忽略)
3、选择题 如图所示,一带电微粒从两竖直的带等量异种电荷的平行板上方h处自由落下,两板间还存在方向垂直纸面向里的匀强磁场,带电小球通过正交的电、磁场时,其运动情况是( )
A.可能做匀速直线运动
B.可能做匀加速直线运动
C.可能做曲线运动
D.一定做曲线运动
4、计算题 如图所示,串联阻值为R的闭合电路中,面积为S的正方形区域abcd存在一个方向垂直纸面向外、磁感应强度均匀增加且变化率为k的匀强磁场Bt,abcd的电阻值也为R,其他电阻不计。电阻两端又向右并联一个平行板电容器。在靠近M板处由静止释放一质量为m、电量为+q的带电粒子(不计重力),经过N板的小孔P进入一个垂直纸面向内、磁感应强度为B的圆形匀强磁场,已知该圆形匀强磁场的半径为。求:
(1)电容器获得的电压;
(2)带电粒子从小孔P射入匀强磁场时的速度;
(3)带电粒子在圆形磁场运动时的轨道半径及它离开磁场时的偏转角。
5、计算题 1897年汤姆生通过对阴极射线的研究,发现了电子,从而使人们认识到原子是可分的。汤姆生当年用来测定电子比荷(电荷量e与质量m之比)的实验装置如图所示,真空玻璃管内C、D为平行板电容器的两极,圆形阴影区域内可由管外电磁铁产生一垂直纸面的匀强磁场,圆形区域的圆心位于C、D中心线的中点,直径与C、D的长度相等,已知极板C、D的长度为L1,C、D间的距离为d,极板右端到荧光屏的距离为L2。由K发出的电子,经A与K之间的高电压加速后,形成一束很细的电子流,电子流沿C、D中心线进入板间区域,若C、D间无电压,则电子将打在荧光屏上的O点;若在C、D间加上电压U,则电子将打在荧光屏上的P点,P点到O点的距离为h;若再在圆形区域内加一方向垂直于纸面向外、磁感应强度为B的匀强磁场,则电子又打在荧光屏上的O点。不计重力影响。
(1)求电子打在荧光屏O点时速度的大小;
(2)推导出电子比荷的表达式;
(3)利用这个装置,还可以采取什么方法测量电子的比荷?