|
时间:2017-08-07 11:41:48
1、单选题
某人银行账户今年底余额减去1500元后,正好比去年底余额减少了25%,去年底余额比前年余额的120%少2000元,则此人银行账户今年底余额一定比前年底余额( )。
A. 多1000元
B. 少1000元
C. 多10%
D. 少10%
参考答案: D
本题解释:
正确答案是D
考点
和差倍比问题
解析
设前年底余额为m元,则去年为(1.2m-2000)元,今年为[0.75×(1.2m-2000)+1500]元,化简得今年为0.9m元,即今年底余额比前年底减少10%,故正确答案为D。
标签
逆向考虑
2、单选题
甲乙二人协商共同投资,甲从乙处取了15000元,并以两人名义进行了25000元的投资,但由于决策失误,只收回10000元。甲由于过失在己,愿意主动承担2/3的损失。问收回的投资中,乙将分得多少钱?( )
A. 10000元
B. 9000元
C. 6000元
D. 5000元
参考答案: A
本题解释:
正确答案是A
考点
经济利润问题
解析
共损失了25000-10000=15000元,甲承担15000×2/3=10000元,乙承担剩余的5000元损失,因此乙应该收回:他的投资-他承担的损失=15000-5000=10000元,故正确答案为A。
3、单选题
甲、乙两人卖数量相同的萝卜,甲打算卖1元2个,乙打算卖1元3个。如果甲乙两人一起按2元5个的价格卖掉全部的萝卜,总收入会比预想的少4元钱。问两人共有多少个萝卜?( )
A. 420
B. 120
C. 360
D. 240
参考答案: D
本题解释:
正确答案是D
考点
经济利润问题
解析
设原来的萝卜共有a个,则每个人都有a/2个萝卜,根据题意有:(1/2×a/2+1/3×a/2)-2a/5=4,解得a=240,故正确答案为D。
秒杀技
由题意可知甲打算15元30个,乙打算10元30个,即25元60个。合在一起则为24元60个,也即每60个萝卜少卖1元,因此少卖4元应为240个,这里的30的由来是从2、3、5的最小公倍数想到的。
4、单选题
小明今年a岁,芳芳明年(a-4)岁,再过c年,他们相差( )。
A. 4岁
B. c+4岁
C. 5岁
D. c-3岁
参考答案: C
本题解释:
【解析】不管过多少年,两人年龄差永远不会改变;今年芳芳是a-5岁,所以相差5岁,选C。
5、单选题
某种汉堡包每个成本4.5元,售价10.5元。当天卖不完的汉堡包即不再出售,在过去十天里,餐厅每天都会准备200个汉堡包,其中有六天正好卖完,四天各剩余25个。问这十天该餐厅卖汉堡包共赚了多少元?( )
A. 10850
B. 10950
C. 11050
D. 11350
参考答案: B
本题解释:
正确答案是B
考点
鸡兔同笼问题
解析
先考虑十天全卖出去,然后分析差异,那么共赚了(10.5-4.5)×200×10-10.5×25×4=10950元(没卖出的部分,不仅每个没赚到10.5-4.5=6元,还赔进去成本4.5元),故正确答案为B。
标签
差异分析
6、单选题
有一串数:1,3,8,22,60,164,448,……;其中第一个数是1,第二个数是3,从第三个数起,每个数恰好是前两个数之和的2倍。那么在这串数中,第2000个数除以9的余数是( )。
A. 1
B. 2
C. 3
D. 4
参考答案: C
本题解释:
C。本题属于周期类问题。用数列的前几项除以9取余数,得到138462705138……是一个循环数列,周期T=9。根据周期的公式,2000/9余数为2,因此第2000个数除以9得到的余数是3,所以选择C选项。
7、单选题
已知一个长方体的长、宽、高分别为10分米、8分米和6分米,先从它上面切下一个最大的正方体,然后再从剩下的部分上切下一个最大的正方体。问切除这两个正方体后,最后剩下部分的体积是多少?( )
A. 212立方分米
B. 200立方分米
C. 194立方分米
D. 186立方分米
参考答案: B
本题解释:
【答案解析】根据题意可知,第一次切下的正方体的边长为6分米,第二次切下的正方体的边长为4分米,故最后剩下部分的体积是10×8×6-6×6×6-4×4×4=200立方分米。
8、单选题
书架的某一层上有136本书,且是按照“3本小说、4本教材、5本工具书、7本科书、3本小说、4本教材……”的顺序循环从左至右排列的。问该层最右边的一本是什么书?( )
A. 小说
B. 教材
C. 工具书
D. 科技书
参考答案: A
本题解释:
正确答案是A
考点
周期问题
解析
循环周期为3+4+5+7=19,136÷19=7……3,即7个周期多3本,则最右边的一本书是小说,故正确答案为A。
9、单选题
当第29届奥运会于北京时间2008年8月8日20时正式开幕时,全世界和北京同一天的国家占( )。
A. 全部
B. 1/2
C. 1/2以上
D. 1/2以下
参考答案: A
本题解释:
正确答案是A
考点
星期日期问题
解析
解析1:
全球分为东西各12区。按照东加西减的原理,北京东8区晚8点时,东12区应该是8日夜里24点;此时西12区时间是从东12区相应减一天,为7日24点,所以全球正好都处在8日,故正确答案为A。
解析2:
15个经度相差1个小时,北京属于东8区,当北京在20时的时候,有20个区的地区在0时之后(即同一天),也就是有20×15=300度的地区在0—20时,另外有20~24时的地区,刚好是4个区即4×15=60度,300+60=360,即整个地球,故正确答案为A。
10、单选题
现有50名学生都做物理、化学实验,如果物理实验做正确的有40人,化学实验做正确的有31人,两种实验都做错的有4人,则两种实验都做对的有( )。
A. 27人
B. 25人
C. 19人
D. 10
参考答案: B
本题解释:
【答案解析】容斥问题,40+31-X=50-4,所以X=25,选B。
11、单选题
现有21朵鲜花分给5人,若每个人分得的鲜花数各不相同,则分得鲜花最多的人至少分得( )朵鲜花。
A. 7
B. 8
C. 9
D. 10
参考答案: A
本题解释:
正确答案是A
考点多位数问题解析要使分得最多花的人分到的花尽可能的少,那么其他人分到的花尽可能的多。5人分到的花应尽量接近,以保证分得最多花的人分到的花尽可能少,所以最好是5个连续的自然数,21÷5=4.2,所以5人先分花数为2、3、4、5、6。2+3+4+5+6=20,还剩1朵花未分出。剩下的1朵花只能分给之前分到6朵花的人。则分得最多的人至少分得7朵鲜花,正确答案为A。
12、单选题
教室里有若干学生,走了10名女生后,男生是女生人数的2倍,又走了9名男生后,女生是男生人数的5倍。问:最初有多少名女生?( )
A. 15
B. 12
C. 10
D. 9
参考答案: A
本题解释:
A【解析】设最初有x名女生,则男生的数量为2(x-10),由题意可列等式x-10=5[2(x-10)-9],可得x=15。故选A。
13、单选题
用3、9、0、1、8、5分别组成一个最大的六位数与最小的六位数,它们的差是( )。
A. 15125
B. 849420
C. 786780
D. 881721
参考答案: D
本题解释:
D最大的数为985310,最小的数为103589,故它们的差为881721。
14、单选题
在400米环形跑道上,A、B两点相距100米。甲、乙两人分别从A、B两点同时出发,按逆时针方向跑步。甲每秒跑5米,乙每秒跑4米。每人每跑100米,都要停10秒。那么,甲追上乙需要的时间是( )秒。
A. 80
B. 100
C. 120
D. 140
参考答案: D
本题解释:
【答案解析】假设甲、乙都不停地跑,那么甲追上乙的时间是100÷(5-4)=100(秒)。甲、乙每跑100米停10秒,等于甲跑20秒(100÷5)休息10秒,乙跑25秒(100÷4)休息10秒。跑100秒甲要停4次(100÷20-1),共用140秒(100+10×4),此时甲已跑的路程为500米。在第130秒时乙已跑路程为400米(他此时已休息3次,花去30秒),并在该处休息到第140秒,甲刚好在乙准备动身时赶到,他们碰到一块了。所以,甲追上乙需要的时间是140秒。故选D。
15、单选题
某公司去年有员工830人,今年男员工人数比去年减少6%,女员工人数比去年增加5%,员工总数比去年增加3人,问今年男员工有多少人?( )
A. 329
B. 350
C. 371
D. 504
参考答案: A
本题解释:
正确答案是A
考点
和差倍比问题
解析
设去年男员工X人,女员工Y人,由题意知:X+Y=830,5%Y-6%X=3,解得X=350。今年男员工减少了,所以人数小于350,只有A符合条件,故正确答案为A。
秒杀技
由题知,今年男员工数是去年的94%,所以今年男员工数可被94%整除,根据选项,只有A符合。故正确答案为A。
标签
数字特性
16、单选题
某商品按定价的80%(八折)出售,仍能获得20%的利润,问定价时期望的利润率是多少?( )
A. 50%
B. 40%
C. 30%
D. 20%
参考答案: A
本题解释:
【答案解析】设成本为1,根据定价的80%=1.2,所以定价为1.5,1.5-1=0.5,选A。
考查对于利润的理解:单个商品利润=售价-成本,获得百分之几的利润是相对于成本来说的,如我们生产一支笔成本1元,我们将它以1.5元出售,则获得利润为0.5元,因为(0.5/1)*100%=50%,所以获得了50%的利润解法如下:设定价为y,成本为x,则按定价80%出售,仍获得20%利润用数学公式表示就是0.8y-x=0.2x,即售价-成本=利润因此,得y=3x/2,或按原价出售,则利润为,y-x=3x/2-x=x/2即利润率为50%。
17、单选题
大学的小李和b大学的小孙分别从自己学校同时出发,不断往返于a、b两校之间。现已知小李的速度为85米/分钟,小孙的速度为105米/分钟,且经过12分钟后两人第二次相遇。问a、b两校相距多少米?( )
A. 1140米
B. 980米
C. 840米
D. 760米
参考答案: D
本题解释:
【答案解析】设两校相距s米,则第二次相遇两人的路程和为3s米,有3s=(85+105)×12,解得s=760。
18、单选题
相同表面积的四面体,六面体,正十二面体以及正二十面体,其中体积最大的是( )。
A. 四面体
B. 六面体
C. 正十二面体
D. 正二十面体
参考答案: D
本题解释:
正确答案是D
考点
几何问题
解析
根据等量最值原理,同样表面积的空间几何图形,越接近于球,体积越大。而四个选项中,正二十面体最接近于球,所以体积最大。故正确答案为D。
19、单选题
现有200根相同的钢管,把它们堆放成正三角形垛,使剩余的钢管尽可能的少,那么乘余的钢管有( )。
A. 9
B. 10
C. 11
D. 12
参考答案: B
本题解释:
【解析】20层的情况是1-20的和,一共是210,超出了,所以减去最后一层20剩下190,所以剩余的钢管有200-190=10根。
20、单选题
某地劳动部门租用甲、乙两个教室开展农村实用人才培训。两教室均有5排座位,甲教室每排可坐10人,乙教室每排可坐9人。两教室当月共举办该培训27次,每次培训均座无虚席,当月培训1290人次。问甲教室当月共举办了多少次这项培训?( )
A. 8
B. 10
C. 12
D. 15
参考答案: D
本题解释:
正确答案是D
考点
和差倍比问题
解析
乙教室可坐9人,可知乙培训过的人数含有因子3,而总的培训人数1290也含有因子3,因此甲教室培训过的人数也必然含有3因子。而甲教室可坐50人,因此要使甲教室培训过的人数也含有3因子,则其举办次数必然含有3因子,因此只有C、D符合。将C选项代入,可知此时乙教室举办过15次培训,其总人数的尾数为5,而甲教室培训的总人数尾数总是为0,因此甲、乙教室的培训人数尾数为5,不符合要求。故正确答案为D。
秒杀技
由题意,甲教室每次培训50人,乙教室每次培训45,假设甲乙的次数分别为X、Y,则可得50X+45Y=1290,观察等式可知45Y的尾数必然为0,因此Y必然为偶数,从而X为奇数,仅D符合。故正确答案为D。
21、单选题
4只小鸟飞入4个不同的笼子里去,每只小鸟都有自己的一个笼子(不同的鸟,笼子也不相同),每个笼子只能飞进一只鸟。若都不飞进自己的笼子里去,有多少种不同的飞法?( )。
A. 7
B. 8
C. 9
D. 10
参考答案: C
本题解释:
C。本题属于计数问题。本题是排列组合中的错位问题,根据对错位问题数字的记忆,答案应为9种。所以选择C选项。
计算过程:设四只小鸟为1,2,3,4,则1有3个笼可选择,不妨假设1进了2号笼,则2也有3个笼可选择,不妨设2进了3号笼,则剩下鸟3、4和笼1、4只有一种选择。所以一共有3×3=9种。
22、单选题
某单位今年新进了3 个工作人员,可以分配到3 个部门,但每个部门至多只能接收2 个人,问:共有几种不同的分配方案?( )
A. 12
B. 16
C. 24
D. 以上都不对
参考答案: C
本题解释:
【答案】C[解析]每部门都有三种选择,再减去3人同一部门的情况,所以3的3次方-3=24,选C。
23、单选题
把144张卡片平均分成若干盒,每盒在10张到40张之间,则共有( )种不同的分法。
A. 4
B. 5
C. 6
D. 7
参考答案: B
本题解释:
正确答案是B
考点倍数约数问题解析直接分解数字144=2×2×2×2×3×3,可以组合的在10到40之间的数字,有12、16、18、24、36,共5种可能。故正确答案为B。
24、单选题
篮球规则中得分有3分,2分,1分,若在一次比赛中,队员A一人得了13分,那么他的得分组合共( )种。
A. 18
B. 19
C. 20
D. 21
参考答案: D
本题解释:
D[解析]当A的3分分别拿到4,3,2,1,0次的时候,对应的组合数分别是1,3,4,6,7,所以A的得分组合共有1+3+4+6+7=21种,选D。
25、单选题
一篇文章,现有甲、乙、丙三人,如果由甲、乙两人合作翻译,需要10小时完成,如果由乙、丙两人合作翻译,需要12小时完成。现在先由甲、丙两人合作翻译4小时,剩下的再由乙单独去翻译,需要12小时才能完成,则,这篇文章如果全部由乙单独翻译,要多少个小时完成?( )
A. 15
B. 18
C. 20
D. 25
参考答案: A
本题解释:
正确答案是A
考点工程问题解析设总量为1,由题意知甲乙合作的效率为1/10,乙丙合作的效率为1/12。题目给出完成该项工程的过程是甲丙先合作4个小时,乙单独翻译12个小时。在这个工作过程中,甲完成了4个小时的工作量,已完成了12个小时的工作量,丙完成了4个小时的工作量,保持此总量不变,将乙的工作拆分为三个独立的4个小时,重新为如下工作过程:甲乙先合作4个小时,乙丙再合作4个小时,最后乙单独做4个小时,仍然可以保证工程完成。于是假设乙的效率为y,可知4×1/10+4×1/12+4y=1,解得y=1/15,于是乙单独完成需要15个小时,故正确答案为A。
26、单选题
编一本书的书页,用了270个数字(重复的也算,如页码115用了2个1和1个5,共3个数字),问这本书一共有多少页?( )
A. 117
B. 126
C. 127
D. 189
参考答案: B
本题解释:
正确答案是B
考点
多位数问题
解析
结合四个选项都是三位数即可得知最终的页码一定是100多,故此目标是计算从第1页到第99页用掉的数字,然后再逼近目标。从第1页到第9页,用掉数字9个;从第10页到第99页,用掉数字共90×2=180个,还剩余数字270-9-180=81个,将全部用于三位数页码的构造,故能编三位数页码为81÷3=27页。因为三位数页码是从第100页开始,故第27页三位数页码是该书的第126页。故正确答案为B。
27、单选题
2010年某种货物的进口价格是15元/公斤,2011年该货物的进口量增加了一半,进口金额增加了20%。问2011年该货物的进口价格是多少元/公斤?( )
A. 10
B. 12
C. 18
D. 24
参考答案: B
本题解释:
正确答案是B
考点
经济利润问题
解析
假设2010年进口了2公斤,2010年进口金额是30元,2011年进口了3公斤,进口金额是30×(1﹢20%)=36,因此2011年进口价格是36÷3=12元/公斤,故正确答案为B。
标签
赋值思想
28、单选题
100个孩子按1、2、3…依次报数,从报奇数的人中选取k个孩子,他们所报数字之和为1949,问k最大值为多少?( )
A. 43
B. 44
C. 45
D. 46
参考答案: A
本题解释:
【答案】A。解析:奇数个奇数的和为奇数,故k的最大值应是奇数,排除B、D;从1开始,45个连续奇数的和是452>1949,排除C,此题答案为A。
29、单选题
173×173×173-162×162×162=( )
A. 926183
B. 936185
C. 926187
D. 926189
参考答案: D
本题解释:
正确答案是D
考点计算问题解析根据尾数法,173×173×173尾数为7,162×162×162尾数为8,因此173×173×173-162×162×162尾数为9,故正确答案为D。
30、单选题
某商场有7箱饼干,每箱装的包数相同,如果从每箱里拿出25包饼干,那么,7个箱里剩下的饼干包数相当于原来的2箱饼干,原来每箱饼干有多少包?( )。
A. 25
B. 30
C. 50
D. 35
参考答案: D
本题解释:
【解析】比较简单,可以直接列方程:7(X-25)=2X,所以X=35,选D。
31、单选题
一个快钟每小时比标准时间快1分钟,一个慢钟每小时比标准时间慢3分钟。如将两个钟同时调到标准时间,结果在24小时内,快钟显示10点整时,慢钟恰好显示9点整。则此时的标准时间是( )。
A. 9点15分
B. 9点30分
C. 9点35分
D. 9点45分
参考答案: D
本题解释:
【答案解析】使用代入法,设经历了X个小时,标准时间为Y,那么10-X=Y,9+3X=Y,将选项代入,即可得出结论。
32、单选题
两个相同的瓶子装满酒精溶液,一个瓶子中酒精与水的体积比是3:1,另一个瓶子中酒精与水的体积比是4:1,若把两瓶酒精溶液混合,则混合后的酒精和水的体积之比是多少?( )
A. 31:9
B. 7:2
C. 31:40
D. 20:11
参考答案: A
本题解释:
【答案解析】(3/4+4/5)/(1/4+1/5)=31:9
33、单选题
只装有动力桨的船,其单靠人工划船顺流而下的速度是水速的3倍。现该船靠人工划动从A地顺流到达B地,原路返回时只开足动力桨行驶,用时比来时少2/5。问船在静水中开足动力浆行驶的速度是人工划船速度的多少倍?( )
A. 2
B. 3
C. 4
D. 5
参考答案: B
本题解释:
正确答案是B
考点
行程问题
解析
设水速是1,则顺水速度为3,人工划船静水速度=3-1=2,顺水时间:逆水时间=1:(1-2/5)=5:3,则顺水速度:逆水速度=3:5,所以逆水速度为5,动力浆静水速度=5+1=6,比例为6:2=3:1,故正确答案为B。
标签
赋值思想
34、单选题
一杯糖水,第一次加入一定量的水后,糖水的含糖百分比变为15%;第二次又加入同样多的水,糖水的含糖百分变比为12%;第三次再加入同样多的水,糖水的含糖百分比将变为多少?( )
A. 8%
B. 9%
C. 10%
D. 11%
参考答案: C
本题解释:
【答案】C。解析:设第一次加水后糖水总量为100,糖为100×15%=15,则第二次加水后糖水变为15÷12%=125,所以每次加入的水为125-100=25,故第三次加水后糖水的含糖百分比为15÷(125+25)=10%。
35、单选题
某市对52种建筑防水卷材产品进行质量抽检,其中有8种产品的低温柔度不合格,10种产品的可溶物含量不达标,9种产品的接缝剪切性能不合格,同时两项不合格的有7种,有1种产品这三项都不合格,则三项全部合格的建筑防水卷材产品有多少种?( )
A. 37
B. 36
C. 35
D. 34
参考答案: D
本题解释:
正确答案是D
考点
容斥原理问题
解析
本题注意按照不合格得到三个类,进行容斥原理分析。分别设三项全部合格、仅一项不合格的产品有A、B种,根据题意可得B+7+1=52-A,3×1+2×7+1×B=8+10+9,解得A=34,B=10。故正确答案为D。
公式:三集合容斥原理中,将只符合一个条件、只符合两个条件和三个条件都符合的分别看做三个整体,以A、B、C表示三个集合,以X、Y、Z分别表示只符合一个条件、只符合两个条件和三个条件都满足的部分,则有A+B+C=X+2Y+3Z及A∪B∪C=X+Y+Z成立。
标签
整体考虑公式应用
36、单选题
某机关20人参加百分制的普法考试,及格线为60分,20人的平均成绩为88分,及格率为95%。所有人得分均为整数,且彼此得分不同。问成绩排名第十的人最低考了多少分?( )
A. 88
B. 89
C. 90
D. 91
参考答案: B
本题解释:
正确答案是B
考点
多位数问题
解析
要使第十名成绩尽可能的低,那么其他人应该尽可能的高,那么前九名应该分别为100、99、98、97、96、95、94、93、92分,而最后一名未及格,最多59分,此十人成绩之和为923,还剩837分。现要把这837分分给其余10个人,而在这10个人成绩排名第十的人成绩最高,要使其得分最低,则这10人的成绩应尽可能接近。易知此10人平均分为83.7,据此可构造79、80、81、82、83、84、85、86、88、89,因此成绩排名第十的人最低考了89分。故正确答案为B。
37、单选题
某社团共有46人,其中36人爱好戏剧,30人爱好体育,38人爱好写作,40人爱好收藏,问这个社团至少有( )人以上四项活动都喜欢。
A. 5
B. 6
C. 7
D. 8
参考答案: B
本题解释:
【答案解析】根据题意可知,不爱好戏剧的有46-36=10人,不爱好体育的有46-30=16人,不爱好写作的有46-38=8人,不爱好收藏的有46-40=6人。要使四项活动都喜欢的人最少,则应使不爱好这四项活动的人最多,即使不爱好这四项活动的人均不重复,所以至少有46-(10+16+8+6)=6人四项活动都喜欢。所以正确答案为B项。
38、单选题
甲、乙两个容器均有50厘米深,底面积之比为5:4,甲容器水深9厘米,乙容器水深5厘米,再往两个容器各注入同样多的水,直到水深相等,这时两容器的水深是( )。
A. 20厘米
B. 25厘米
C. 30厘米
D. 35厘米
参考答案: B
本题解释:
正确答案是B
考点几何问题解析设注入水后的水深为y厘米,则根据注入水同样多,可知(y-9)×5=(y-5)×4,解得y=25,故正确答案为B。
39、单选题
根据国务院办公厅部分节假日安排的通知,某年8月份有22个工作日,那么当年的8月1日可能是( )。
A. 周一或周三
B. 周三或周日
C. 周一或周四
D. 周四或周日
参考答案: D
本题解释:
正确答案是D
考点
星期日期问题
解析
8月份为31天,有22个工作日,则休息日有9天,而31天大于四周小于五周,故有两种情况:
①1号为周日,保证休息日为1+2×4=9天;
②31号为周六,保证休息日为2×4+1=9天,则3号为周六,此时1号为周四。
故正确答案为D。
标签
分类分步
40、单选题
某区要从10位候选人中投票选举人大代表,现规定每位选举人必须从这10位中任选两位投票,问至少要有多少位选举人参加投票,才能保证有不少于10位选举人投了相同两位候选人的票?( )
A. 382位
B. 406位
C. 451位
D. 516位
参考答案: B
本题解释:
【答案】B。解析:从10位候选人中选2人共有种票,则每种票有9张相同时需要×9=405个人投票,那么只需要再加一人可以保证有不少于10人投了相同两位候选人的票。
41、单选题
某城市共有A、B、C、D、E五个区,A区人口是全市人口的5/17,B区人口是A区人口的2/5,C区人口是D区和E区人口总数的5/8,A区比C区多3万人,全市共有多少万人?( )
A. 20.4
B. 30.6
C. 34.5
D. 44.2
参考答案: D
本题解释:
正确答案是D
考点
和差倍比问题
解析
由A区人口是全市人口的5/17,将全市人口看做17份,则A区有5份,B区有2份,于是C、D、E三区共有10份,而在此三区中,C区人口是D区和E区人口总数的5/8,也即C区人口是此三区人口总数的5/13,因此C区人口为(5/13×10)份,于是A区比C区多5-50/13=15/13份,此部分人口数为3万人,于是全市共有3÷15/13×17=44.2(万人)。故正确答案为D。
标签
赋值思想
42、单选题
超市将99个苹果装进两种包装盒,大包装盒每个装12个苹果,小包装盒每个装5个苹果,共用了十多个盒子刚好装完。问两种包装盒相差多少个?( )
A. 3
B. 4
C. 7
D. 13
参考答案: D
本题解释:
正确答案是D
考点
不定方程问题
解析
设大盒有x个,小盒有y个,则可得12x+5y=99。因为12x是偶数,99是奇数,所以5y是奇数,y是奇数,则5y的尾数是5,可得12x的尾数是4,则可得x=2或者x=7。当x=2时,y=15,符合题意,此时y-x=13;当x=7时,y=3,x+y=10,不满足共用十多个盒子,排除。故正确答案为D。
标签
数字特性
43、单选题
现有一个无限容积的空杯子,先加入1克酒精,再加入2克水,再加入3克酒精,再加入4克水,……,如此下去,问最终杯子中酒精溶液浓度为多少?( )
A. 0
B. 25%
C. 33.3%
D. 50%
参考答案: D
本题解释:
【解析】D。如果把加一次酒精和水看成一个流程,则经过n个流程后,杯子里面有1+3+5+…+(2n-1)=1/2n(1+2n-1)=n2克酒精,而酒精溶液有1+2+…+2n=1/2×2n(1+2n)=n(1+2n)克。
故此时酒精溶液浓度为n2/n(1+2n)=n/(2n+1),当n趋于无穷大时,溶液浓度趋于1/2=50%。
思路点拨:极端法,当加入酒精或水的量极大时连续两次操作水与酒精的差距对整体的影响可以忽略不计,因此必然各占50%。
44、单选题
有300名求职者参加高端人才专场招聘会,其中软件设计类、市场营销类、财务管理类和人力资源管理类分别有100、80、70和50人。问至少有多少人找到工作,才能保证一定有70名找到工作的人专业相同?( )
A. 71
B. 119
C. 258
D. 277
参考答案: C
本题解释:
正确答案是C
考点
抽屉原理问题
解析
考虑对这些人进行分配,在使得每个专业人数不足70的情况下尽可能的增加就业人数,则四类专业可就业的人数分别为69、69、69、50,总和为257人。此时再多1人,则必然有一个专业达到70人,因此所求最少人数为258人,故正确答案为C。
标签
构造调整
45、单选题
某单位共有A.B.C.三个部门,三部门人员平均年龄分别为38岁,24岁,42岁,A和B两部门人员平均年龄为30岁,B和C两部门人员平均年龄为34岁,该单位全体人员的平均年龄为多少岁?( )
A. 34
B. 36
C. 35
D. 37
参考答案: C
本题解释:
正确答案是C
考点
平均数问题
解析
A和B 部门各自平均年龄为38、24岁,混合后平均年龄为30岁,假定两部门的人数分别为x、y,可得38x+24y=30(x+y),可得x:y=3:4,类似可知B和C两部门的人数之比为4:5。据此分别对A、B、C三部门的人数赋值为3、4、5,则总的平均年龄为(3×38+4×24+5×42)÷(3+4+5)=35(岁)。故正确答案为C。
标签
赋值思想
46、单选题
六位同学数学考试的平均成绩是92.5分,他们的成绩是互不相同的整数,最高分是99分,最低分是76分,则按分数从高到低居第三位的同学至少得多少分( )。
A. 93
B. 94
C. 95
D. 96
参考答案: C
本题解释:
C。本题为构造类题目。总分为92.5×6=555,去掉最高分和最低分后还有555-99-76=380。要使第三名分尽可能的低,首先第二名分要尽可能高,即为98分(还余282分)。而第四和第五名的分数要尽量的高,与第三名的分最接近,三者的分为93,94,95。那么最高分至少为95。所以选择C选项。
47、单选题
某城市9月平均气温为28.5度,如当月最热日和最冷日的平均气温相差不超过10度,则该月平均气温在30度及以上的日子最多有多少天?( )
A. 24
B. 25
C. 26
D. 27
参考答案: B
本题解释:
正确答案是B
考点
多位数问题
解析
要使30度以上的天数尽可能多,在气温总和一定的情况下,则必然是其他天的温度尽可能低,而由最热日与最冷日的平均气温相差不超过10度,据此构造极端情况,最热天全部为30度,其余天数为最冷天,温度为20度,设平均气温为30度的天数为Y,则可得30Y+20(30-Y)=30×28.5,解得Y=25.5,因此最多有25天。故正确答案为B。
标签
构造调整
48、单选题
一名外国游客到北京旅游,他要么上午出去游玩,下午在旅馆休息,要么上午休息,下午出去游玩,而下雨天他只能一天都待在屋里。期间,不下雨的天数是12天,他上午待在旅馆的天数为8天,下午待在旅馆的天数为12天,他在北京共待了多少天?( )
A. 16天
B. 20天
C. 22天
D. 24天
参考答案: A
本题解释:
正确答案是A
考点容斥原理问题解析解析1:设这个人在北京共待了n天,其中12天不下雨,那么n-12天下雨。由两集合容斥原理公式得:上午待在旅馆的天数+下午待在旅馆的天数-上下午都待在旅馆的天数(就是下雨的天数)=总天数-上下午都不待在旅馆的天数(根据题意不存在这样的一天)。即:8+12-(n-12)=n-0,解得n=16。故正确答案为A。
解析2:设游客在京期间下雨天数为x。因为他上午待在旅馆的8天中包括两部分:因下雨无法出去的天数(x)和因下午出去游玩而休息的天数(8-x);同理,下午待在旅馆的12天中包括两个部分:因下雨无法出去的天数(x)和因上午出去游玩而休息的天数(12-x)。由题意可得:(8-x)+(12-x)=12,解得x=4,所以一共在北京待了16天。故正确答案为A。
49、单选题
乘火车从甲城到乙城,1998年初需要19.5小时,1998年火车第一次提速30%,1999年第二次提速25%,2000年第三次提速20%。经过三次提速后,从甲城到乙城乘火车只需要( )。
A. 8.19小时
B. 10小时
C. 14.63小时
D. 15小时
参考答案: B
本题解释:
正确答案是B
考点行程问题解析设1998年火车的速度为v,三次提速后所需时间为t,三次提速后速度为(1+30%)×(1+25%)×(1+20%)vt=19.5v,解得t=10。因此正确答案为B。
50、单选题
有8种颜色的小球,数量分别为2、3、4、5、6、7、8、9,将它们放进一个袋子里面,问拿到同颜色的球最多需要几次?( )
A. 6
B. 7
C. 8
D. 9
参考答案: D
本题解释:
【答案解析】解析:"抽屉原理"问题。先从最不利的情况入手,最不利的情况也就使次数最多的情况。即8种小球,每次取一个,且种类不相同(这就是最不利的情况)。然后任取一个,必有重复的,所以是最多取9个。