|
时间:2017-06-14 09:20:23
1、单选题
一种溶液,蒸发掉一定量的水后,溶液的浓度为10%;再蒸发掉同样多的水后,溶液的浓度变为12%;第三次蒸发掉同样多的水后,溶液的浓度将变为多少?( )
A. 14%
B. 17%
C. 16%
D. 15%
参考答案: D
本题解释:
正确答案是D
考点
浓度问题
解析
在蒸发的过程中,溶液的量发生变化,但其中溶质保持不变,因此将溶质作为解题突破口,给溶质赋值。为方便后面的计算,设其溶质为60,则可知其浓度在10%时,溶液量为600,其浓度在12%时,溶液量为500。这说明在变化过程中蒸发掉了水为100。因此第三次蒸发同样多的水后,溶液还剩400,故其浓度为15%。故正确答案为D。
标签
赋值思想
2、单选题
某单位今年新进了3 个工作人员,可以分配到3 个部门,但每个部门至多只能接收2 个人,问:共有几种不同的分配方案?( )
A. 12
B. 16
C. 24
D. 以上都不对
参考答案: C
本题解释:
【答案】C[解析]每部门都有三种选择,再减去3人同一部门的情况,所以3的3次方-3=24,选C。
3、单选题
某商场有7箱饼干,每箱装的包数相同,如果从每箱里拿出25包饼干,那么,7个箱里剩下的饼干包数相当于原来的2箱饼干,原来每箱饼干有多少包?( )。
A. 25
B. 30
C. 50
D. 35
参考答案: D
本题解释:
【解析】比较简单,可以直接列方程:7(X-25)=2X,所以X=35,选D。
4、单选题
某村有甲乙两个生产小组,总共50人,其中青年人共13人。甲组中青年人与老年人的比例是2∶3,乙组中青年人与老年人的比例是1∶5,甲组中青年人的人数是:( )
A. 5人
B. 6人
C. 8人
D. 12人
参考答案: C
本题解释:
【答案】C。解析:设甲组人数为5x,乙组人数为6y。有,解得x=4。因此甲组青年人的人数为8。
5、单选题
大学的小李和b大学的小孙分别从自己学校同时出发,不断往返于a、b两校之间。现已知小李的速度为85米/分钟,小孙的速度为105米/分钟,且经过12分钟后两人第二次相遇。问a、b两校相距多少米?( )
A. 1140米
B. 980米
C. 840米
D. 760米
参考答案: D
本题解释:
【答案解析】设两校相距s米,则第二次相遇两人的路程和为3s米,有3s=(85+105)×12,解得s=760。
6、单选题
某城市9月平均气温为28.5度,如当月最热日和最冷日的平均气温相差不超过10度,则该月平均气温在30度及以上的日子最多有多少天?( )
A. 24
B. 25
C. 26
D. 27
参考答案: B
本题解释:
正确答案是B
考点
多位数问题
解析
要使30度以上的天数尽可能多,在气温总和一定的情况下,则必然是其他天的温度尽可能低,而由最热日与最冷日的平均气温相差不超过10度,据此构造极端情况,最热天全部为30度,其余天数为最冷天,温度为20度,设平均气温为30度的天数为Y,则可得30Y+20(30-Y)=30×28.5,解得Y=25.5,因此最多有25天。故正确答案为B。
标签
构造调整
7、单选题
某商品按定价的80%(八折)出售,仍能获得20%的利润,问定价时期望的利润率是多少?( )
A. 50%
B. 40%
C. 30%
D. 20%
参考答案: A
本题解释:
【答案解析】设成本为1,根据定价的80%=1.2,所以定价为1.5,1.5-1=0.5,选A。
考查对于利润的理解:单个商品利润=售价-成本,获得百分之几的利润是相对于成本来说的,如我们生产一支笔成本1元,我们将它以1.5元出售,则获得利润为0.5元,因为(0.5/1)*100%=50%,所以获得了50%的利润解法如下:设定价为y,成本为x,则按定价80%出售,仍获得20%利润用数学公式表示就是0.8y-x=0.2x,即售价-成本=利润因此,得y=3x/2,或按原价出售,则利润为,y-x=3x/2-x=x/2即利润率为50%。
8、单选题
从1、2、3、4、5、6、7、8、9中任意选三个数,使他们的和为偶数,则有多少种选法?( )
A. 40
B. 41
C. 44
D. 46
参考答案: C
本题解释:
【答案解析】:选C,形成偶数的情况:奇数+奇数+偶数=偶数;偶数+偶数+偶数=偶数=>其中,奇数+奇数+偶数=偶数=>C(2,5)[5个奇数取2个的种类]×C(1,4)[4个偶数取1个的种类]=10×4=40,偶数+偶数+偶数=偶数=>C(3,4)=4[4个偶数中选出一个不要],综上,总共4+40=44
9、单选题
一名外国游客到北京旅游,他要么上午出去游玩,下午在旅馆休息,要么上午休息,下午出去游玩,而下雨天他只能一天都待在屋里。期间,不下雨的天数是12天,他上午待在旅馆的天数为8天,下午待在旅馆的天数为12天,他在北京共待了多少天?( )
A. 16天
B. 20天
C. 22天
D. 24天
参考答案: A
本题解释:
正确答案是A
考点容斥原理问题解析解析1:设这个人在北京共待了n天,其中12天不下雨,那么n-12天下雨。由两集合容斥原理公式得:上午待在旅馆的天数+下午待在旅馆的天数-上下午都待在旅馆的天数(就是下雨的天数)=总天数-上下午都不待在旅馆的天数(根据题意不存在这样的一天)。即:8+12-(n-12)=n-0,解得n=16。故正确答案为A。
解析2:设游客在京期间下雨天数为x。因为他上午待在旅馆的8天中包括两部分:因下雨无法出去的天数(x)和因下午出去游玩而休息的天数(8-x);同理,下午待在旅馆的12天中包括两个部分:因下雨无法出去的天数(x)和因上午出去游玩而休息的天数(12-x)。由题意可得:(8-x)+(12-x)=12,解得x=4,所以一共在北京待了16天。故正确答案为A。
10、单选题
为节约用水,某市决定用水收费实行超额超收,标准用水量以内每吨2.5元,超过标准的部分加倍收费。某用户某月用水15吨,交水费62.5元,若该用户下个月用水12吨,则应交水费多少钱?( )
A. 42.5元
B. 47.5元
C. 50元
D. 55元
参考答案: B
本题解释:
正确答案是B
考点
鸡兔同笼问题
解析
解析1:先将15吨全部看成超出的部分,则按照每吨5元收费,共计收费75元,而实际交水费62.5元,少交12.5元。这是因为标准量以内每吨2.5元,比整体看做超出部分计价少交2.5元,因此标准用水量为5吨。因此12吨应交水费为5×2.5+7×5=47.5元。故正确答案为B。
解析2:设标准用水量上限为A吨,则有2.5A+5×(15-A)=62.5,解得A=5。用水12吨,应交水费2.5×5+5×(12-5)=47.5元。故正确答案为B。
秒杀技
将12吨用水看成标准量以内,应交水费为12×2.5=30元,但四个选项中没有此值,这说明12吨是超过标准用水量。那么15吨必然也是超过标准用水量,要计算12吨应交的水费,只需从15吨所交62.5元中扣除多超出的3吨的价钱即15元即可,也即为47.5元。故正确答案为B。
标签
差异分析
11、单选题
受原材料涨价影响,某产品的总成本比之前上涨了1/15,而原材料成本在总成本中的比重提高了2.5个百分点,问原材料的价格上涨了多少?( )
A. 1/9
B. 1/10
C. 1/11
D. 1/12
参考答案: A
本题解释:
正确答案是A
考点
经济利润问题
解析
设原成本为15,则原材料涨价后成本变为16,设原材料价格为x,则有(x+1)/16-x/15=2.5%,解得x=9,则原材料的价格上涨了1/9。故正确答案为A。
12、单选题
一果农想将一块平整的正方形土地分割为四块小土地,并将果树均匀整齐地种在土地的所有边界上,且在每块土地的四个角上都种上一棵果树,该果农未经细算就购买了60颗果树,如果仍按上述想法种植,那他至少多买了( )棵果树。
A. 0
B. 3
C. 6
D. 15
参考答案: B
本题解释:
【答案解析】本题可利用整除特征性求解,分割成4个小正方形后共有9个顶点,12条边,设每条边(不算顶点)种x棵树,则可种12x+9棵,使总棵树小于60的最大x为4,此时可种57棵树,剩余3棵,所以正确答案为B项。
13、单选题
共有100个人参加某公司的招聘考试,考试内容共有5道题,1-5题分别有80人,92人,86人,78人,和74人答对,答对了3道和3道以上的人员能通过考试,请问至少有多少人能通过考试?( )
A. 30
B. 55
C. 70
D. 74
参考答案: C
本题解释:
正确答案是C
考点
容斥原理问题
解析
1-5题分别错了20、8、14、22、26人,加起来为90。逆向考虑,为了让更多的人不及格,这90道错题分配的时候应该尽量的3道分给一个人,即可保证一个人不及格,所以一共可以分给最多30个人,让这30个人不及格,所以及格的至少会有70人。故正确答案为C。
标签
三集合容斥原理公式逆向考虑
14、单选题
一列快车和一列慢车相对而行,其中快车的车长200米,慢车的车长250米,坐在慢车上的旅客看到快车驶过其所在窗口的时间是6秒钟,坐在快车上的旅客看到慢车驶过其所在窗口的时间是多少秒钟?( )
A. 6秒钟
B. 6.5秒钟
C. 7秒钟
D. 7.5秒钟
参考答案: D
本题解释:
【答案解析】解析:追击问题的一种。坐在慢车看快车=>可以假定慢车不动,此时,快车相对速度为V(快)+V(慢),走的路程为快车车长200;同理坐在快车看慢车,走的距离为250,由于两者的相对速度相同=>250/x=200/6=>x=7.5(令x为需用时间)。
15、单选题
甲、乙、丙、丁四个人去图书馆借书,甲每隔5天去一次,乙每隔11天去一次,丙每隔17天去一次,丁每隔29天去一次。如果5月18日他们四个人在图书馆相遇,问下一次四个人在图书馆相遇是几月几号?( )
A. 10月18日
B. 10月14日
C. 11月18日
D. 11月14日
参考答案: D
本题解释:
正确答案是D
考点
周期问题
解析
每隔n天去一次即每(n+1)天去一次。下一次四个人相遇所隔天数应该是6、12、18、30的最小公倍数,即为180。而5月18日后的第180天约经过6个月,故为11月,故排除A、B。若下次相遇是11月18日,则经过日期不可能恰好为180天,即11月14日。故正确答案为D。
标签
最小公倍数
16、单选题
小明今年a岁,芳芳明年(a-4)岁,再过c年,他们相差( )。
A. 4岁
B. c+4岁
C. 5岁
D. c-3岁
参考答案: C
本题解释:
【解析】不管过多少年,两人年龄差永远不会改变;今年芳芳是a-5岁,所以相差5岁,选C。
17、单选题
某鞋业公司的旅游鞋加工车间要完成一出口订单,如果每天加工50 双,要比原计划晚3 天完成,如果每天加工60 双,则要比原计划提前2 天完成,这一订单共需要加工多少双旅游鞋?( )
A. 1200 双
B. 1300 双
C. 1400 双
D. 1500 双
参考答案: D
本题解释:
【答案】D[解析]能被50、60整除的,排除B和C,再依次代入A和D,A不符合,所以选D。
18、单选题
科考队员在冰面上钻孔获取样本,测量不同空心之间的距离,获得的部分数据分别为1米、3米、6米、12米、24米、48米。问科考队员至少钻了多少个孔?( )
A. 4
B. 5
C. 6
D. 7
参考答案: D
本题解释:
正确答案是D
考点
几何问题
解析
所测距离组成一个数列1、3、6、12、24、48,易知该数列中任一项均大于其前面所有项之和,故这6条线段不可能组成封闭回路,即6条线段最少7个端点,至少钻7个孔。故正确答案为D。
19、单选题
某机关20人参加百分制的普法考试,及格线为60分,20人的平均成绩为88分,及格率为95%。所有人得分均为整数,且彼此得分不同。问成绩排名第十的人最低考了多少分?( )
A. 88
B. 89
C. 90
D. 91
参考答案: B
本题解释:
正确答案是B
考点
多位数问题
解析
要使第十名成绩尽可能的低,那么其他人应该尽可能的高,那么前九名应该分别为100、99、98、97、96、95、94、93、92分,而最后一名未及格,最多59分,此十人成绩之和为923,还剩837分。现要把这837分分给其余10个人,而在这10个人成绩排名第十的人成绩最高,要使其得分最低,则这10人的成绩应尽可能接近。易知此10人平均分为83.7,据此可构造79、80、81、82、83、84、85、86、88、89,因此成绩排名第十的人最低考了89分。故正确答案为B。
20、单选题
若x,y,z是三个连续的负整数,并且x>y>z,则下列表达式中正奇数的是( )。
A. yz-x
B. (x-y)(y-z)
C. x-yz
D. x(y+z)
参考答案: B
本题解释:
正确答案是B
考点
计算问题
解析
三个连续的负整数,有两种情形:奇、偶、奇;偶、奇、偶。分情况讨论:
(1)当x、y、z依次为奇、偶、奇数时,直接赋值x=-1,y=-2,z=-3,代入选项可排除C、D;
(2)当x、y、z依次为偶、奇、偶数时,直接赋值x=-2,y=-3,z=-4,代入选项可排除A、C、D。
故正确答案为B。
标签
赋值思想分类分步
21、单选题
某城市共有A、B、C、D、E五个区,A区人口是全市人口的5/17,B区人口是A区人口的2/5,C区人口是D区和E区人口总数的5/8,A区比C区多3万人,全市共有多少万人?( )
A. 20.4
B. 30.6
C. 34.5
D. 44.2
参考答案: D
本题解释:
正确答案是D
考点
和差倍比问题
解析
由A区人口是全市人口的5/17,将全市人口看做17份,则A区有5份,B区有2份,于是C、D、E三区共有10份,而在此三区中,C区人口是D区和E区人口总数的5/8,也即C区人口是此三区人口总数的5/13,因此C区人口为(5/13×10)份,于是A区比C区多5-50/13=15/13份,此部分人口数为3万人,于是全市共有3÷15/13×17=44.2(万人)。故正确答案为D。
标签
赋值思想
22、单选题
100人参加7项活动,已知每个人只参加一项活动,而且每项活动参加的人数都不一样,那么,参加人数第四多的活动最多有几个人参加?( )
A. 22
B. 21
C. 24
D. 23
参考答案: A
本题解释:
正确答案是A
考点
多位数问题
解析
要保证“第四多的活动越多越好”,那么我们要求"其他活动的人越少越好“,其中有三个比其多,另外三个比其少,比”第四多“的少的最少的就是1、2、3,还剩下100-1-2-3=94,剩下四个活动需要尽量的接近,以保证”第四多“能够尽可能多,所以最好是四个连续的自然数,94÷4=23.5,所以这四个数分别为22、23、24、25,故正确答案为A。
23、单选题
相同表面积的四面体,六面体,正十二面体以及正二十面体,其中体积最大的是( )。
A. 四面体
B. 六面体
C. 正十二面体
D. 正二十面体
参考答案: D
本题解释:
正确答案是D
考点
几何问题
解析
根据等量最值原理,同样表面积的空间几何图形,越接近于球,体积越大。而四个选项中,正二十面体最接近于球,所以体积最大。故正确答案为D。
24、单选题
小红把平时节省下来的全部五分硬币先围成一个三角形,正好用完,后来又改围城一个正方形,也正好用完。如果正方形的每条边比三角形的每条边少用5枚硬币,则小红所有五分硬币的总价值是( )。
A. 1元
B. 2元
C. 3元
D. 4元
参考答案: C
本题解释:
正确答案是C
考点和差倍比问题解析设围成三角形每条边上有x个硬币,每个顶点重复1次,则围成三角形硬币总数为3(x-1)个,同理围成正方形硬币总数为4(x-5-1),3(x-1)=4(x-5-1),解得x=21,因此共有硬币3×(21-1)=60个,总价值3元。故正确答案为C。
秒杀技围成三角形正好用完说明硬币总数一定是3的倍数,因此只有C符合。
25、单选题
现有式样、大小完全相同的四张硬纸片,上面分别写了1、2、3、4四个不同的数字,如果不看数字,连续抽取两次,抽后仍旧放还,则两次都抽到2的概率是( )。
A. 1/2
B. 1/4
C. 1/8
D. 1/16
参考答案: D
本题解释:
【解析】两次都抽到2的概率是1/4*1/4=1/16,选D。
26、单选题
有一串数:1,3,8,22,60,164,448,……;其中第一个数是1,第二个数是3,从第三个数起,每个数恰好是前两个数之和的2倍。那么在这串数中,第2000个数除以9的余数是( )。
A. 1
B. 2
C. 3
D. 4
参考答案: C
本题解释:
C。本题属于周期类问题。用数列的前几项除以9取余数,得到138462705138……是一个循环数列,周期T=9。根据周期的公式,2000/9余数为2,因此第2000个数除以9得到的余数是3,所以选择C选项。
27、单选题
由1、2、3组成的没有重复数字的所有三位数之和为多少?( )
A. 1222
B. 1232
C. 1322
D. 1332
参考答案: D
本题解释:
【答案】D。解析:对其中任何一个数字,分别有2次出现在个位,所以所有这些数字的个位数字之和是(1+2+3)×2=12,同理所有这些数字的十位、百位数字之和都是12,所以所有这些数字之和是12+12×10+12×100=1332,选择D。
28、单选题
有8种颜色的小球,数量分别为2、3、4、5、6、7、8、9,将它们放进一个袋子里面,问拿到同颜色的球最多需要几次?( )
A. 6
B. 7
C. 8
D. 9
参考答案: D
本题解释:
【答案解析】解析:"抽屉原理"问题。先从最不利的情况入手,最不利的情况也就使次数最多的情况。即8种小球,每次取一个,且种类不相同(这就是最不利的情况)。然后任取一个,必有重复的,所以是最多取9个。
29、单选题
某船第一次顺流航行21千米又逆流航行4千米,第二天在同一河道中顺流航行12千米,逆流航行7千米,结果两次所用的时间相等。假设船本身速度及水流速度保持不变,则顺水船速与逆水船速之比是( )。
A. 2.5:1
B. 3:1
C. 3.5:1
D. 4:1
参考答案: B
本题解释:
正确答案是B
考点行程问题解析解析1:设顺水和逆水船速分别为a、b,根据题意又21/a+4/b=12/a+7/b,解得a/b=3,答案为B。
解析2:两次航行时间相等,除去顺水和逆水航行相同的距离,21-12=9千米,7-4=3千米,说明顺水行驶9千米与逆水行驶3千米所用的时间相等,行驶的路程比为9:3=3:1,因此速度比为3:1,故正确答案为B。
30、单选题
一条隧道,甲单独挖要20天完成,乙单独挖要10天完成。如果甲先挖1天,然后乙接替甲挖1天,再有甲接替乙挖1天……,两人如此交替工作,那么,挖完这条隧道共用多少?( )
A. 14
B. 16
C. 15
D. 13
参考答案: A
本题解释:
正确答案是A
考点
工程问题
解析
设工作总量为20,则甲每天挖1,乙每天挖2,因此每轮工作量为3,于是可知前6轮完整完成,共完成工作量18,还剩下2,此时轮到甲继续工作,甲工作一天后还剩下1,还需要乙工作半天,所以一共挖了14天,故正确答案为A。
标签
赋值思想
31、单选题
李华步行以每小时4千米的速度从学校出发到20.4千米外的冬令营报到。0.5小时后,营地老师闻讯前往迎接,每小时比李华多走1.2千米。又过了1.5小时,张明从学校骑车去营地报到。结果3人同时在途中某地相遇。问:张明每小时的速度是多少千米?( )
A. 25
B. 50
C. 30
D. 20
参考答案: D
本题解释:
D老师速度=4+1.2=5.2千米/时,与李华相遇时间是老师出发后(20.4-4×0.5)÷(4+5.2)=2小时,相遇地点距离学校4×(0.5+2)=10千米,所以张明的速度=10÷(2-1.5)=20千米/时。
32、单选题
有20名工人修筑一段公路,计划15天完成。动工3天后抽出5人去其他工地,其余人继续修路。如果每人工作效率不变,那么修完这段公路实际用( )
A. 19天
B. 18天
C. 17天
D. 16天
参考答案: A
本题解释:
【答案】A。解析:5人12天完成的工作量分配给15人需要5×12÷15=4天完成,所以修完这段公路实际用15+4=19天。
33、单选题
甲、乙、丙三名运动员囊括了全部比赛项目的前三名,他们的总分分别是8、7和17分,甲得了一个第一名,已知各个比赛项目分数相同,且第一名的得分不低于二、三名得分的和,那么比赛共有多少个项目?( )
A. 3
B. 4
C. 5
D. 6
参考答案: B
本题解释:
【答案解析】全部比赛前三名的总分为8+7+17=32分,每个项目前三名的分数和至少是3+2+1=6分,所以每个项目前三名的分数和应该是32的大于6的约数,只能是8、16、32;如果是16或32,因为甲得了一个第一,所以甲的得分应大于8,不合题意,所以每个项目前三名的分数和是8分,共有项目32÷8=4个。
34、单选题
三名小孩儿中有一名学龄前儿童(年龄不足6岁),他们的年龄都是质数,且依次相差6岁,他们的年龄之和为多少岁?( )
A. 21
B. 27
C. 33
D. 39
参考答案: C
本题解释:
【答案解析】6以下的质数有2、3、5,2+6=8不是质数,3+6=9也不是质数。因此最小的那个年龄为5岁,他们的年龄之和为5+11+17=33岁。
35、单选题
一公司销售部有4名区域销售经理,每人负责的区域数相同,每个区域都正好有两名销售经理负责,而任意两名销售经理负责的区域只有1个相同。问这4名销售经理总共负责多少个区域的业务?( )
A. 12
B. 8
C. 6
D. 4
参考答案: C
本题解释:
正确答案是C
考点
容斥原理问题
解析
由题意,每个区域正好有两名销售经理负责,可知2个经理一组对应一个区域;而根据,任意两名销售经理负责的区域只有1个相同,可知2个经理一组仅对应一个区域。由此两条可知,区域数其相当于从4个经理中任选2个有多少种组合,一种组合就对应一个区域,故共有6个区域。因此正确答案为C。
36、单选题
某社团共有46人,其中36人爱好戏剧,30人爱好体育,38人爱好写作,40人爱好收藏,问这个社团至少有( )人以上四项活动都喜欢。
A. 5
B. 6
C. 7
D. 8
参考答案: B
本题解释:
【答案解析】根据题意可知,不爱好戏剧的有46-36=10人,不爱好体育的有46-30=16人,不爱好写作的有46-38=8人,不爱好收藏的有46-40=6人。要使四项活动都喜欢的人最少,则应使不爱好这四项活动的人最多,即使不爱好这四项活动的人均不重复,所以至少有46-(10+16+8+6)=6人四项活动都喜欢。所以正确答案为B项。
37、单选题
一笔奖金分一等奖、二等奖和三等奖,每个一等奖的奖金是每个二等奖奖金的两倍,每个二等奖的奖金是每个三等奖奖金的两倍。如果评一、二、三等奖各两人,那么每个一等奖金是308元;如果评一个一等奖,三个三等奖,两个二等奖,那么一等奖的奖金是多少元( )
A. 154
B. 196
C. 392
D. 490
参考答案: C
本题解释:
【答案解析】①每个二等奖奖金为:308÷2=154(元)。②每个三等奖奖金为:154÷2=77(元)。 ③一共有奖金:(308+154+77)×2=1078(元)。④设一个三等奖奖金为x元,则一个二等奖奖金为2x元,一个一等奖奖金为4x元,列方程得:4x+4x+3x=1078,x=98。一等奖奖金为:98×4=392(元)。故正确答案为C。
38、单选题
一列客车长250米,一列货车长350米,在平行的轨道上相向行驶,从两车头相遇到两车尾相离经过15秒,已知客车与货车的速度比是5∶3。问两车的速度相差多少?( )
A. 10米/秒
B. 15米/秒
C. 25米/秒
D. 30米/秒
参考答案: A
本题解释:
【答案解析】根据题意可知,两车的速度和为(250+350)÷15=40米/秒,且两车的速度比是5∶3,则两车的速度差为10米/秒。
39、单选题
某地劳动部门租用甲、乙两个教室开展农村实用人才培训。两教室均有5排座位,甲教室每排可坐10人,乙教室每排可坐9人。两教室当月共举办该培训27次,每次培训均座无虚席,当月培训1290人次。问甲教室当月共举办了多少次这项培训?( )
A. 8
B. 10
C. 12
D. 15
参考答案: D
本题解释:
正确答案是D
考点
和差倍比问题
解析
乙教室可坐9人,可知乙培训过的人数含有因子3,而总的培训人数1290也含有因子3,因此甲教室培训过的人数也必然含有3因子。而甲教室可坐50人,因此要使甲教室培训过的人数也含有3因子,则其举办次数必然含有3因子,因此只有C、D符合。将C选项代入,可知此时乙教室举办过15次培训,其总人数的尾数为5,而甲教室培训的总人数尾数总是为0,因此甲、乙教室的培训人数尾数为5,不符合要求。故正确答案为D。
秒杀技
由题意,甲教室每次培训50人,乙教室每次培训45,假设甲乙的次数分别为X、Y,则可得50X+45Y=1290,观察等式可知45Y的尾数必然为0,因此Y必然为偶数,从而X为奇数,仅D符合。故正确答案为D。
40、单选题
用3、9、0、1、8、5分别组成一个最大的六位数与最小的六位数,它们的差是( )。
A. 15125
B. 849420
C. 786780
D. 881721
参考答案: D
本题解释:
D最大的数为985310,最小的数为103589,故它们的差为881721。
41、单选题
一个长方形,它的周长是32米,长是宽的3倍。这个长方形的面积是多少平方米?( )
A. 64
B. 56
C. 52
D. 48
参考答案: D
本题解释:
D设宽为x则长为3x,则2(x+3x)=32,则x=4,故面积为48平方米。
42、单选题
甲、乙两人在长30米的泳池内游泳,甲每分钟游37.5米,乙每分钟游52.5米,两人同时分别从泳池的两端出发,触壁后原路返回,如是往返。如果不计转向的时间,则从出发开始计算的1分50秒内两人共相遇了多少次?( )
A. 2
B. 3
C. 4
D. 5
参考答案: B
本题解释:
正确答案是B
考点
行程问题
解析
解析1:题目的关键在于第一次相遇,两人游过长度之和为泳池长,之后每次相遇,都需要两人再游过两个泳池长。两人一起游一个泳池长,所需时间为30÷(37.5+52.5)×60=20(秒),因此两人分别在20秒时、60秒时、100秒时相遇,共相遇3次。故正确答案为B。
解析2:关键点同解析1。直接求出1分50秒两人合起来游过的距离为(37.5+52.5)×110÷60=165(米),为5.5个泳池长。而两人相遇时都恰是合起来游过距离为奇数个泳池长时,也即两人分别在合游1个、3个、5个泳池长时相遇,故共相遇3次。故正确答案为B。
解析3:套用公式。先看迎面相遇,30×(2N-1)≤(37.5+52.5)×11/6,得N≤3.25,即有3次迎面相遇;再看追上相遇,30×(2N-1)≤(52.5-37.5)×11/6,得N≤23/24,即没有追及相遇。故总的相遇次数为3次。故正确答案为B。
公式:两运动体从两端同时出发,相向而行,不断往返:
第N次迎面相遇,两运动体路程和=全程×(2N-1);
第N次追上相遇,两运动体路程差=全程×(2N-1)。
标签
公式应用
43、单选题
一杯糖水,第一次加入一定量的水后,糖水的含糖百分比变为15%;第二次又加入同样多的水,糖水的含糖百分变比为12%;第三次再加入同样多的水,糖水的含糖百分比将变为多少?( )
A. 8%
B. 9%
C. 10%
D. 11%
参考答案: C
本题解释:
【答案】C。解析:设第一次加水后糖水总量为100,糖为100×15%=15,则第二次加水后糖水变为15÷12%=125,所以每次加入的水为125-100=25,故第三次加水后糖水的含糖百分比为15÷(125+25)=10%。
44、单选题
某次考试100道选择题,每做对一题得1.5分,不做或做错一题扣1分,小李共得100分,那么他答错多少题( )
A. 20
B. 25
C. 30
D. 80
参考答案: A
本题解释:
A【解析】不做或做错的题目为(100×1.5-100)÷(1.5+1)=20。
45、单选题
已知甲、乙两人共有260本书,其中甲的书有13%是专业书,乙的书有12.5%是专业书,问甲有多少本非专业书?( )
A. 75
B. 87
C. 174
D. 67
参考答案: B
本题解释:
正确答案是B
考点
和差倍比问题
解析
由“甲的书有13%是专业书”可知,甲的专业书=甲的书×13%,所以甲的书是100的倍数,甲的非专业书是87的倍数,排除A、D。由“乙的书有12.5%是专业书”可知,乙的专业书=乙的书×12.5%=乙的书×1/8,所以乙的书是8的倍数。结合选项,若甲的专业书为174本,则甲有200本书,那么乙的书有60本,不是8的倍数,排除C,故正确答案为B。
标签
数字特性
46、单选题
某区要从10位候选人中投票选举人大代表,现规定每位选举人必须从这10位中任选两位投票,问至少要有多少位选举人参加投票,才能保证有不少于10位选举人投了相同两位候选人的票?( )
A. 382位
B. 406位
C. 451位
D. 516位
参考答案: B
本题解释:
【答案】B。解析:从10位候选人中选2人共有种票,则每种票有9张相同时需要×9=405个
47、单选题
教室里有若干学生,走了10名女生后,男生是女生人数的2倍,又走了9名男生后,女生是男生人数的5倍。问:最初有多少名女生?( )
A. 15
B. 12
C. 10
D. 9
参考答案: A
本题解释:
A【解析】设最初有x名女生,则男生的数量为2(x-10),由题意可列等式x-10=5[2(x-10)-9],可得x=15。故选A。
48、单选题
从12时到13时,钟的时针与分针可成直角的机会有( )。
A. 1次
B. 2次
C. 3次
D. 4次
参考答案: B
本题解释:
【答案解析】一个小时内成直角只有两次,选B。
49、单选题
乘火车从甲城到乙城,1998年初需要19.5小时,1998年火车第一次提速30%,1999年第二次提速25%,2000年第三次提速20%。经过三次提速后,从甲城到乙城乘火车只需要( )。
A. 8.19小时
B. 10小时
C. 14.63小时
D. 15小时
参考答案: B
本题解释:
正确答案是B
考点行程问题解析设1998年火车的速度为v,三次提速后所需时间为t,三次提速后速度为(1+30%)×(1+25%)×(1+20%)vt=19.5v,解得t=10。因此正确答案为B。
50、单选题
100个孩子按1、2、3……依次报数,从报奇数的人中选取k个孩子,他们所报数字之和为1949,问k最大值为多少?( )
A. 43
B. 44
C. 45
D. 46
参考答案: A
本题解释:
【答案】A。解析:奇数个奇数的和为奇数,故k的最大值应是奇数,排除B、D;从1开始,45个连续奇数的和是452>1949,排除C,此题答案为A。