|
时间:2017-03-03 09:23:53
1、单选题
四人进行篮球传接球练习,要求每人接到球后再传给别人,开始由甲发球,并作为第一次传球。若第五次传球后,球又回到甲手中,则共有传球方式多少种:( )
A. 60;
B. 65;
C. 70;
D. 75;
参考答案: A
本题解释:
【答案解析】:选A,球第一次与第五次传到甲手中的传法有:C(1,3)×C(1,2)×C(1,2)×C(1,2)×C(1,1)=3×2×2×2×1=24,球第二次与第五次传到甲手中的传法有:C(1,3)×C(1,1)×C(1,3)×C(1,2)×C(1,1)=3×1×3×2×1=18,球第三次与第五次传到甲手中的传法有:C(1,3)×C(1,2)×C(1,1)×C(1,3)×C(1,1)=3×2×1×3×1=18,24+18+18=60种,具体而言:分三步:
(1)在传球的过程中,甲没接到球,到第五次才回到甲手中,那有3×2×2×2=24种,第一次传球,甲可以传给其他3个人,第二次传球,不能传给自己,甲也没接到球,那就是只能传给其他2个人,同理,第三次传球和第四次也一样,有乘法原理得一共是3×2×2×2=24种。
(2)因为有甲发球的,所以所以接下来考虑只能是第二次或第三次才有可能回到甲手中,并且第五次球才又回到甲手中。当第二次回到甲手中,而第五次又回到甲手中,故第四次是不能到甲的,只能分给其他2个人,同理可得3×1×3×2=18种。
(3)同理,当第三次球回到甲手中,同理可得3×3×1×2=18种。最后可得24+18+18=60种
2、单选题
现有21朵鲜花分给5人,若每个人分得的鲜花数各不相同,则分得鲜花最多的人至少分得( )朵鲜花。
A. 7
B. 8
C. 9
D. 10
参考答案: A
本题解释:
正确答案是A
考点多位数问题解析要使分得最多花的人分到的花尽可能的少,那么其他人分到的花尽可能的多。5人分到的花应尽量接近,以保证分得最多花的人分到的花尽可能少,所以最好是5个连续的自然数,21÷5=4.2,所以5人先分花数为2、3、4、5、6。2+3+4+5+6=20,还剩1朵花未分出。剩下的1朵花只能分给之前分到6朵花的人。则分得最多的人至少分得7朵鲜花,正确答案为A。
3、单选题
书架的某一层上有136本书,且是按照“3本小说、4本教材、5本工具书、7本科书、3本小说、4本教材……”的顺序循环从左至右排列的。问该层最右边的一本是什么书?( )
A. 小说
B. 教材
C. 工具书
D. 科技书
参考答案: A
本题解释:
正确答案是A
考点
周期问题
解析
循环周期为3+4+5+7=19,136÷19=7……3,即7个周期多3本 ,则最右边的一本书是小说,故正确答案为A。
4、单选题
甲、乙、丙、丁四个旅行团分别有游客69人、85人、93人、97人。现在要把这四个旅行团分别进行分组,使每组都是A名游客,以便乘车前往参观游览。已知甲、乙、丙三个旅行团分成每组A人的若干组后,所剩的人数都相同,问丁旅行团分成每组A人的若干组后还剩几人?( )
A. 0
B. 1
C. 2
D. 3
参考答案: B
本题解释:
【解析】B。根据题意,知69、85、93对A同余。由85-69=16,93-85=8,93-69=24,可推出A=8或4或2,97÷8=12……1。所以丁团分成每组A人的若干组后还剩1人。
5、单选题
100个孩子按1、2、3…依次报数,从报奇数的人中选取k个孩子,他们所报数字之和为1949,问k最大值为多少?( )
A. 43
B. 44
C. 45
D. 46
参考答案: A
本题解释:
【答案】A。解析:奇数个奇数的和为奇数,故k的最大值应是奇数,排除B、D;从1开始,45个连续奇数的和是452>1949,排除C,此题答案为A。
6、单选题
一只船沿河顺水而行的航速为30千米/小时,已知按同样的航速在该河上顺水航行3小时和逆水航行5小时的航程相等,则此船在该河上顺水漂流半小时的航程为:( )
A. 1千米
B. 2千米
C. 3千米
D. 6千米
参考答案: C
本题解释:
【答案解析】根据水速=(顺速-逆速)/2,所以(30-18)/2=6,因此漂流半小时就是6×1/2=3,选C。
7、单选题
某公司去年有员工830人,今年男员工人数比去年减少6%,女员工人数比去年增加5%,员工总数比去年增加3人,问今年男员工有多少人?( )
A. 329
B. 350
C. 371
D. 504
参考答案: A
本题解释:
正确答案是A
考点
和差倍比问题
解析
设去年男员工X人,女员工Y人,由题意知:X+Y=830,5%Y-6%X=3,解得X=350。今年男员工减少了,所以人数小于350,只有A符合条件,故正确答案为A。
秒杀技
由题知,今年男员工数是去年的94%,所以今年男员工数可被94%整除,根据选项,只有A符合。故正确答案为A。
标签
数字特性
8、单选题
某市对52种建筑防水卷材产品进行质量抽检,其中有8种产品的低温柔度不合格,10种产品的可溶物含量不达标,9种产品的接缝剪切性能不合格,同时两项不合格的有7种,有1种产品这三项都不合格,则三项全部合格的建筑防水卷材产品有多少种?( )
A. 37
B. 36
C. 35
D. 34
参考答案: D
本题解释:
正确答案是D
考点
容斥原理问题
解析
本题注意按照不合格得到三个类,进行容斥原理分析。分别设三项全部合格、仅一项不合格的产品有A、B种,根据题意可得B+7+1=52-A,3×1+2×7+1×B=8+10+9,解得A=34,B=10。故正确答案为D。
公式:三集合容斥原理中,将只符合一个条件、只符合两个条件和三个条件都符合的分别看做三个整体,以A、B、C表示三个集合,以X、Y、Z分别表示只符合一个条件、只符合两个条件和三个条件都满足的部分,则有A+B+C=X+2Y+3Z及A∪B∪C=X+Y+Z成立。
标签
整体考虑公式应用
9、单选题
教室里有若干学生,走了10名女生后,男生是女生人数的2倍,又走了9名男生后,女生是男生人数的5倍。问:最初有多少名女生?( )
A. 15
B. 12
C. 10
D. 9
参考答案: A
本题解释:
A【解析】设最初有x名女生,则男生的数量为2(x-10),由题意可列等式x-10=5[2(x-10)-9],可得x=15。故选A。
10、单选题
某单位2011年招聘了65名毕业生,拟分配到该单位的7个不同部门,假设行政部门分得的毕业生人数比其他部门都多,问行政部门分得的毕业生人数至少为多少名?( )
A. 10
B. 11
C. 12
D. 13
参考答案: B
本题解释:
正确答案是B
考点
趣味数学问题
解析
65÷7=9余2,即平均分配给7个不同部门还剩余2名毕业生,已知行政部门毕业生毕业生最多,所以只需将剩余的2名毕业生分配给行政部门即可(如果只分配1名,那么其他部门也会出现不少于10人的情况),可得9+2=11,故正确答案为B。
11、单选题
一车行共有65辆小汽车,其中45辆有空调,30辆有高级音响,12辆兼而有之。既没有空调也没有高级音响的汽车有几辆?( )
A. 2;
B. 8;
C. 10;
D. 15;
参考答案: A
本题解释:
【答案解析】:选A,车行的小汽车总量=只有空调的+只有高级音响的+两样都有的+两样都没有的,只有空调的=有空调的-两样都有的=45-12=33,只有高级音响的=有高级音响的-两样都有的=30-12=18,令两样都没有的为x,则65=33+18+12+x=>x=2
12、单选题
某汽车厂离生产甲、乙、丙三种车型,其中乙型产量的3倍与丙型产量的6倍之和等于甲型产量的4倍,甲型产量与乙型的2倍之和等于丙型产量的7倍。则甲、乙、丙三型产量之比为( )。
A. 5:4:3
B. 4:3:2
C. 4:2:1
D. 3:2:1
参考答案: D
本题解释:
正确答案是D
考点
和差倍比问题
解析
设甲的产量为x,乙的产量为y,丙的产量为z。则可得如下:
3y+6z=4x,x+2y=7z,两式相加可得3x+z=5y,直接带入选项,只有D符合,故正确答案为D。
秒杀技
得到3y+6z=4x后,观察该式,可知x应为3的倍数,只有D符合。
标签
直接代入
13、单选题
甲、乙两时钟都不正确,甲钟每走24小时,恰好快1分钟;乙钟每走24小时,恰好慢1分钟。假定今天下午三点钟的时候,将甲、乙两钟都调好,指在准确的时间上,任其不停地走下去,问下一次这两只钟都同样指在三点时,要隔多少天?( )
A. 30
B. 240
C. 480
D. 720
参考答案: D
本题解释:
【答案解析】可以先求出甲钟比标准时钟多转一圈所需天数,标准时钟比乙钟多走一圈所需天数,然后再求二者的最小公倍数。甲钟与标准时钟下一次同时指向三点时,甲钟比标准时钟多转一圈,也就是多走12小时,即60×12分钟,需要60×12÷(61-60)=720÷1=720(天)同样,标准时钟与乙钟下一次同时指向三点时,标准时钟比乙钟多转一圈,需要60×12÷(60-59)=720÷1=720(天)所以,经过720天后,甲、乙两钟同时指在三点。故正确答案为D。
14、单选题
173×173×173-162×162×162=( )
A. 926183
B. 936185
C. 926187
D. 926189
参考答案: D
本题解释:
正确答案是D
考点计算问题解析根据尾数法,173×173×173尾数为7,162×162×162尾数为8,因此173×173×173-162×162×162尾数为9,故正确答案为D。
15、单选题
对某单位的100名员工进行调查,结果发现他们喜欢看球赛和电影、戏剧。其中58人喜欢看球赛,38人喜欢看戏剧,52人喜欢看电影,既喜欢看球赛又喜欢看戏剧的有18人,既喜欢看电影又喜欢看戏剧的有16人,三种都喜欢看的有12人,则只喜欢看电影的有( )。
A. 22人
B. 28人
C. 30人
D. 36人
参考答案: A
本题解释:
【答案解析】本题可以使用阴影覆盖法,即100-(40+18+20)=22(人),故远A项。
16、单选题
有一个正方形花池,周围用边长25cm的方砖铺了一条宽1.5米的小路,共用1776块。花池的面积是多少平方米?( )
A. 111
B. 289
C. 400
D. 10404
参考答案: B
本题解释:
【答案】B[解析]水池周围的面积是0.25×0.25×1776=111, 设外围正方形边长X,花池小正方形边长Y,则有X2-Y2=111, 20的平方是400,17的平方是289,400-289刚好是111(熟记20以内平方的好处…),所以花池面积就是289,选B。
17、单选题
篮球规则中得分有3分,2分,1分,若在一次比赛中,队员A一人得了13分,那么他的得分组合共( )种。
A. 18
B. 19
C. 20
D. 21
参考答案: D
本题解释:
D[解析]当A的3分分别拿到4,3,2,1,0次的时候,对应的组合数分别是1,3,4,6,7,所以A的得分组合共有1+3+4+6+7=21种,选D。
18、单选题
有一串数:1,3,8,22,60,164,448,……;其中第一个数是1,第二个数是3,从第三个数起,每个数恰好是前两个数之和的2倍。那么在这串数中,第2000个数除以9的余数是( )。
A. 1
B. 2
C. 3
D. 4
参考答案: C
本题解释:
C。本题属于周期类问题。用数列的前几项除以9取余数,得到138462705138……是一个循环数列,周期T=9。根据周期的公式,2000/9余数为2,因此第2000个数除以9得到的余数是3,所以选择C选项。
19、单选题
编一本书的书页,用了270个数字(重复的也算,如页码115用了2个1和1个5,共3个数字),问这本书一共有多少页?( )
A. 117
B. 126
C. 127
D. 189
参考答案: B
本题解释:
正确答案是B
考点
多位数问题
解析
结合四个选项都是三位数即可得知最终的页码一定是100多,故此目标是计算从第1页到第99页用掉的数字,然后再逼近目标。从第1页到第9页,用掉数字9个;从第10页到第99页,用掉数字共90×2=180个,还剩余数字270-9-180=81个,将全部用于三位数页码的构造,故能编三位数页码为81÷3=27页。因为三位数页码是从第100页开始,故第27页三位数页码是该书的第126页。故正确答案为B。
20、单选题
一个五位数,左边三位数是右边两位数的5倍,如果把右边的两位数移到前面,则所得新的五位数要比原来的五位数的2倍还多75,则原来的五位数是( )。
A. 12525
B. 13527
C. 17535
D. 22545
参考答案: A
本题解释:
【答案解析】直接代入,选A。
21、单选题
大学的小李和b大学的小孙分别从自己学校同时出发,不断往返于a、b两校之间。现已知小李的速度为85米/分钟,小孙的速度为105米/分钟,且经过12分钟后两人第二次相遇。问a、b两校相距多少米?( )
A. 1140米
B. 980米
C. 840米
D. 760米
参考答案: D
本题解释:
【答案解析】设两校相距s米,则第二次相遇两人的路程和为3s米,有3s=(85+105)×12,解得s=760。
22、单选题
一只装有动力桨的船,其单靠人工划船顺流而下的速度是水速的3倍。现该船靠人工划动从A地顺流到达B地,原路返回时只开足动力桨行驶,用时比来时少2/5。问船在静水中开足动力浆行驶的速度是人工划船速度的多少倍?()
A. 2
B. 3
C. 4
D. 5
参考答案: B
本题解释:
B[解析]设水速是1,则顺水速度为3,人工划船静水速度=3-1=2,顺水时间:逆水时间=1: (1-2/5)=5:3,则顺水速度:逆水速度=3:5,所以逆水速度为5,动力桨静水速度=5+1=6,比例为6:2=3:1
23、单选题
六位同学数学考试的平均成绩是92.5分,他们的成绩是互不相同的整数,最高分是99分,最低分是76分,则按分数从高到低居第三位的同学至少得多少分( )。
A. 93
B. 94
C. 95
D. 96
参考答案: C
本题解释:
C。本题为构造类题目。总分为92.5×6=555,去掉最高分和最低分后还有555-99-76=380。要使第三名分尽可能的低,首先第二名分要尽可能高,即为98分(还余282分)。而第四和第五名的分数要尽量的高,与第三名的分最接近,三者的分为93,94,95。那么最高分至少为95。所以选择C选项。
24、单选题
甲、乙两人卖数量相同的萝卜,甲打算卖1元2个,乙打算卖1元3个。如果甲乙两人一起按2元5个的价格卖掉全部的萝卜,总收入会比预想的少4元钱。问两人共有多少个萝卜?( )
A. 420
B. 120
C. 360
D. 240
参考答案: D
本题解释:
正确答案是D
考点
经济利润问题
解析
设原来的萝卜共有a个,则每个人都有a/2个萝卜,根据题意有:(1/2×a/2+1/3×a/2)-2a/5=4,解得a=240,故正确答案为D。
秒杀技
由题意可知甲打算15元30个,乙打算10元30个,即25元60个。合在一起则为24元60个,也即每60个萝卜少卖1元,因此少卖4元应为240个,这里的30的由来是从2、3、5的最小公倍数想到的。
25、单选题
一个车队有三辆汽车, 担负着五家工厂的运输任务,这五家工厂分别需要 7、9、4、10、6 名装卸工,共计 36 名;如果安排一部分装卸工跟车装卸,则不需要那么多装卸工,而只需要在装卸任务较多的工厂再安排一些装卸工就能完成装卸任务。那么在这种情况下,总共至少需要( )名装卸工才能保证各厂的装卸需求?( )
A. 26
B. 27
C. 28
D. 29
参考答案: A
本题解释:
【答案】A[解析]要求最少,那么三辆车分别装五家工厂里面最大的三个需求量,则可以满足条件,分别装10、9、7, 所以是10+9+7=26,选A。
26、单选题
某村有甲乙两个生产小组,总共50人,其中青年人共13人。甲组中青年人与老年人的比例是2∶3,乙组中青年人与老年人的比例是1∶5,甲组中青年人的人数是:( )
A. 5人
B. 6人
C. 8人
D. 12人
参考答案: C
本题解释:
【答案】C。解析:设甲组人数为5x,乙组人数为6y。有,解得x=4。因此甲组青年人的人数为8。
27、单选题
某鞋业公司的旅游鞋加工车间要完成一出口订单,如果每天加工50 双,要比原计划晚3 天完成,如果每天加工60 双,则要比原计划提前2 天完成,这一订单共需要加工多少双旅游鞋?( )
A. 1200 双
B. 1300 双
C. 1400 双
D. 1500 双
参考答案: D
本题解释:
【答案】D[解析]能被50、60整除的,排除B和C,再依次代入A和D,A不符合,所以选D。
28、单选题
一种打印机,如果按销售价打九折出售,可盈利215元,如果按八折出售,就要亏损125元。则这种打印机的进货价为( )。
A. 3400元
B. 3060元
C. 2845元
D. 2720元
参考答案: C
本题解释:
正确答案是C
考点经济利润问题解析解析1:按售价的九折出售可盈利215元,按八折出售亏损125元,因此售价的1/10为215+125=340元,售价为3400元,进货价3400-340-215=2845元,因此正确答案为C。
解析2:设售价为x元,根据题意又0.9x-215=0.8x+125,解得x=3400,进货价为3400-340-215=2845元。因此正确答案为C。
秒杀技根据题意。进货价加215元应能被9整除,只有C项符合。
29、单选题
从12时到13时,钟的时针与分针可成直角的机会有多少次?( )
A. 1
B. 2
C. 3
D. 4
参考答案: B
本题解释:
【答案解析】:选B,时针和分针在12点时从同一位置出发,按照规律,分针转过360度,时针转过30度,即分针转过6度(一分钟),时针转过0.5度,若一个小时内时针和分针之间相隔90度,则有方程:6x=0.5x+90和6x=0.5x+270成立,分别解得x的值就可以得出当前的时间,应该是12点180/11分(约为16分左右)和12点540/11分(约为50分左右),可得为两次。
30、单选题
一个空的容积为64 升的鼓形圆桶上有A、B 两孔,一种蒸馏水从A 孔流入同 时从B 孔流出,如果通过A 孔的流速为3 升/小时,那么在B 孔的流速为多少升时才能保证用96 小时恰好装满容器?( )
A. 4/3
B. 8/3
C. 7/3
D. 3/7
参考答案: C
本题解释:
【答案】C[解析]从A孔流入同时从B孔流出,设流速X,则容器实际蓄水速度为3-X,所以64/(3-X)=96,求出X=7/3。
31、单选题
超市将99个苹果装进两种包装盒,大包装盒每个装12个苹果,小包装盒每个装5个苹果,共用了十多个盒子刚好装完。问两种包装盒相差多少个?( )
A. 3
B. 4
C. 7
D. 13
参考答案: D
本题解释:
正确答案是D
考点
不定方程问题
解析
设大盒有x个,小盒有y个,则可得12x+5y=99。因为12x是偶数,99是奇数,所以5y是奇数,y是奇数,则5y的尾数是5,可得12x的尾数是4,则可得x=2或者x=7。当x=2时,y=15,符合题意,此时y-x=13;当x=7时,y=3,x+y=10,不满足共用十多个盒子,排除。故正确答案为D。
标签
数字特性
32、单选题
一行10个人来到电影院看电影,前9人入坐之后,第十人无论怎么坐都至少有一个人与他相邻,那么电影院这排最多有多少座位?( )。
A. 10
B. 19
C. 26
D. 27
参考答案: D
本题解释:
D。本题可采用极端法。既然要第十人旁边一定有人,那么最极端的排法就是将座位按每3个分成一组,每组最中间的座位坐人,故9人最多有9*3=27,所以选择D选项。
33、单选题
甲、乙、丙、丁四个人去图书馆借书,甲每隔5天去一次,乙每隔11天去一次,丙每隔17天去一次,丁每隔29天去一次。如果5月18日他们四个人在图书馆相遇,问下一次四个人在图书馆相遇是几月几号?( )
A. 10月18日
B. 10月14日
C. 11月18日
D. 11月14日
参考答案: D
本题解释:
正确答案是D
考点
周期问题
解析
每隔n天去一次即每(n+1)天去一次。下一次四个人相遇所隔天数应该是6、12、18、30的最小公倍数,即为180。而5月18日后的第180天约经过6个月,故为11月,故排除A、B。若下次相遇是11月18日,则经过日期不可能恰好为180天,即11月14日。故正确答案为D。
标签
最小公倍数
34、单选题
一种商品如果以八折出售,可以获得相当于进价20%的毛利,那么如果以原价出售,可以获得相当于进价百分之几的毛利?( )
A. 20%;
B. 30%;
C. 40%;
D. 50%;
参考答案: D
本题解释:
【答案解析】:选D,设原价X,进价Y,那X×80%-Y=Y×20%,解出X=1.5Y所求为[(X-Y)/Y]×100%=[(1.5Y-Y)/Y]×100%=50%
35、单选题
一杯糖水,第一次加入一定量的水后,糖水的含糖百分比变为15%;第二次又加入同样多的水,糖水的含糖百分变比为12%;第三次再加入同样多的水,糖水的含糖百分比将变为多少?( )
A. 8%
B. 9%
C. 10%
D. 11%
参考答案: C
本题解释:
【答案】C。解析:设第一次加水后糖水总量为100,糖为100×15%=15,则第二次加水后糖水变为15÷12%=125,所以每次加入的水为125-100=25,故第三次加水后糖水的含糖百分比为15÷(125+25)=10%。
36、单选题
把144张卡片平均分成若干盒,每盒在10张到40张之间,则共有( )种不同的分法。
A. 4
B. 5
C. 6
D. 7
参考答案: B
本题解释:
正确答案是B
考点倍数约数问题解析直接分解数字144=2×2×2×2×3×3,可以组合的在10到40之间的数字,有12、16、18、24、36,共5种可能。故正确答案为B。
37、单选题
1000克苹果价值2.4元,柚子的价格比苹果贵一倍,如果两个柚子的重量等于5个每个重100克的苹果,3.6元能买多少个柚子?( )
A. 3
B. 4
C. 6
D. 10
参考答案: A
本题解释:
A两个柚子重500克,即1个柚子重250克,由题意可知,1000克柚子的价格为4.8元,所以250克柚子为1.2元,即1个柚子1.2元,所以3.6元可买3个柚子。
38、单选题
同时打开游泳池的A,B两个进水管,加满水需1小时30分钟,且A管比B管多进水180立方米,若单独打开A管,加满水需2小时40分钟,则B管每分钟进水多少立方米?( )
A. 6
B. 7
C. 8
D. 9
参考答案: B
本题解释:
正确答案是B
考点
工程问题
解析
解析1:设B管每分钟进水x立方米,则A管每分钟进水为x+2立方米,根据题意可得(2x+2)×90=(x+2)×160,解得x=7。故正确答案为B。
解析2:由A、B两管合作加水90分钟,加满水池且A管比B管多进水180立方米,首先可知A管比B管每分钟多进水2立方米,其次可知若A管自己单独灌水90×2=180(分钟),则也可灌满水池,且多灌180立方米(此处原理即用A代替B工作,看差异情况),而题中又告知A管单独工作只需160分钟即可灌满水,因此可知多灌的180立方米用时为180-160=20(分钟),因此A管的效率为每分钟9立方米,于是可知B管每分钟进水7立方米。故正确答案为B。
标签
差异分析
39、单选题
某城市共有A、B、C、D、E五个区,A区人口是全市人口的5/17,B区人口是A区人口的2/5,C区人口是D区和E区人口总数的5/8,A区比C区多3万人,全市共有多少万人?( )
A. 20.4
B. 30.6
C. 34.5
D. 44.2
参考答案: D
本题解释:
正确答案是D
考点
和差倍比问题
解析
由A区人口是全市人口的5/17,将全市人口看做17份,则A区有5份,B区有2份,于是C、D、E三区共有10份,而在此三区中,C区人口是D区和E区人口总数的5/8,也即C区人口是此三区人口总数的5/13,因此C区人口为(5/13×10)份,于是A区比C区多5-50/13=15/13份,此部分人口数为3万人,于是全市共有3÷15/13×17=44.2(万人)。故正确答案为D。
标签
赋值思想
40、单选题
A、B两地相距1350米,甲和乙分别从A、B两地出发,相向而行。已知甲的速度为4千米/小时,乙的速度为5千米/小时,1分钟后两人调头反方向而行,再过3分钟,两人再次调头反方向而行,以此类推,再过5、7、……(连续奇数)分钟调头而行,请问,出发多少分钟后两人才能相遇?()
A. 9
B. 25
C. 49
D. 81
参考答案: D
本题解释:
【答案解析】如果两人不调头走,两人相遇需要1350÷1000÷(4+5)×60=9分钟。如果以初始方向为正方向,则两个人分别走了1、-3、5、-7、……分钟的路程,由于9=1-3+5-7+9-11+13-15+17,则出发后1+3+5+7+9+11+13+15+17=81分钟两人相遇。
41、单选题
有300名求职者参加高端人才专场招聘会,其中软件设计类、市场营销类、财务管理类和人力资源管理类分别有100、80、70和50人。问至少有多少人找到工作,才能保证一定有70名找到工作的人专业相同?( )
A. 71
B. 119
C. 258
D. 277
参考答案: C
本题解释:
正确答案是C
考点
抽屉原理问题
解析
考虑对这些人进行分配,在使得每个专业人数不足70的情况下尽可能的增加就业人数,则四类专业可就业的人数分别为69、69、69、50,总和为257人。此时再多1人,则必然有一个专业达到70人,因此所求最少人数为258人,故正确答案为C。
标签
构造调整
42、单选题
小红把平时节省下来的全部五分硬币先围成一个三角形,正好用完,后来又改围城一个正方形,也正好用完。如果正方形的每条边比三角形的每条边少用5枚硬币,则小红所有五分硬币的总价值是( )。
A. 1元
B. 2元
C. 3元
D. 4元
参考答案: C
本题解释:
正确答案是C
考点和差倍比问题解析设围成三角形每条边上有x个硬币,每个顶点重复1次,则围成三角形硬币总数为3(x-1)个,同理围成正方形硬币总数为4(x-5-1),3(x-1)=4(x-5-1),解得x=21,因此共有硬币3×(21-1)=60个,总价值3元。故正确答案为C。
秒杀技围成三角形正好用完说明硬币总数一定是3的倍数,因此只有C符合。
43、单选题
从一楼走到五楼,爬完一层休息30秒,一共要210秒,那么从一楼走到7楼,需要多少秒( )
A. 318
B. 294
C. 330
D. 360
参考答案: C
本题解释:
C【解析】从一点走到五楼,休息了三次,那么每爬上一次需要的时间为(210-30×3)÷(5-1)=30秒,故从一楼走到七楼需要30×(7-1)+30×(7-2)=330秒。
44、单选题
一位长寿老人生于19世纪90年代,有一年他发现自己的年龄的平方刚好等于当年的年份。问这位老人出生于哪一年?( )
A. 1894年
B. 1892年
C. 1898年
D. 1896年
参考答案: B
本题解释:
正确答案是B
考点
年龄问题
解析
由于年龄的平方等于当年的年份,而年份介于1890到2010之间,所以该老人应该是40多岁,而已知:43的平方为1849,44的平方为1936,45的平方为2025。因此,该老人在1936年应为44岁,1936-44=1892。故正确答案为B。
45、单选题
当第29届奥运会于北京时间2008年8月8日20时正式开幕时,全世界和北京同一天的国家占( )。
A. 全部
B. 1/2
C. 1/2以上
D. 1/2以下
参考答案: A
本题解释:
正确答案是A
考点
星期日期问题
解析
解析1:
全球分为东西各12区。按照东加西减的原理,北京东8区晚8点时,东12区应该是8日夜里24点;此时西12区时间是从东12区相应减一天,为7日24点,所以全球正好都处在8日,故正确答案为A。
解析2:
15个经度相差1个小时,北京属于东8区,当北京在20时的时候,有20个区的地区在0时之后(即同一天),也就是有20×15=300度的地区在0—20时,另外有20~24时的地区,刚好是4个区即4×15=60度,300+60=360,即整个地球,故正确答案为A。
46、单选题
某国家对居民收入实行下列税率方案;每人每月不超过3000美元的部分按照1%税率征收,超过3000美元不超过6000美元的部分按照X%税率征收,超过6000美元的部分按Y%税率征收(X,Y为整数)。假设该国某居民月收入为6500美元,支付了120美元所得税,则Y为多少( )
A. 6
B. 3
C. 5
D. 4
参考答案: A
本题解释:
A【解析】该国某居民月收入为6500美元要交的所得税为3000×1%+3000×X%+(6500-3000-3000)×Y%=120,化简为6X+Y=18,由于6X和18都能被6整除,因此Y也一定能被6整除分析选项,只有A符合。
47、单选题
甲、乙、丙、丁四人为地震灾区捐款,甲捐款数是另外三人捐款总数的一半,乙捐款数是另外三人捐款总数的1/3,丙捐款数是另外三人捐款总数的1/4,丁捐款169元。问四人一共捐了多少钱?( )
A. 780元
B. 890元
C. 1183元
D. 2083元
参考答案: A
本题解释:
【答案解析】最典型的代入型题目…根据题意可以知道总数和可以被3、4、5整除,满足的只有A。
48、单选题
某人银行账户今年底余额减去1500元后,正好比去年底余额减少了25%,去年底余额比前年余额的120%少2000元,则此人银行账户今年底余额一定比前年底余额( )。
A. 多1000元
B. 少1000元
C. 多10%
D. 少10%
参考答案: D
本题解释:
正确答案是D
考点
和差倍比问题
解析
设前年底余额为m元,则去年为(1.2m-2000)元,今年为[0.75×(1.2m-2000)+1500]元,化简得今年为0.9m元,即今年底余额比前年底减少10%,故正确答案为D。
标签
逆向考虑
49、单选题
一个慢钟每小时比标准时间慢5分钟,一个快钟每小时比标准时间快3分钟。如果将两个钟同时调到标准时间,在24个小时内的某个时间,慢钟显示7:50,快钟显示9:10。那么此时的标准时间应该是什么?( )
A. 8:20
B. 8:30
C. 8:40
D. 8:50
参考答案: C
本题解释:
C.【解析】这是一道快慢钟问题。快钟每小时比慢钟快8分钟,而7:50与9:10之间相差80分钟,则此时距离将两个钟调成标准时间为80÷8=10个小时,10个小时的时间,慢钟共少走了5×10=50分钟,则标准时间应该为8:40。因此,本题的正确答案为C选项。
50、单选题
100人参加7项活动,已知每个人只参加一项活动,而且每项活动参加的人数都不一样,那么,参加人数第四多的活动最多有几个人参加?( )
A. 22
B. 21
C. 24
D. 23
参考答案: A
本题解释:
正确答案是A
考点
多位数问题
解析
要保证“第四多的活动越多越好”,那么我们要求"其他活动的人越少越好“,其中有三个比其多,另外三个比其少,比”第四多“的少的最少的就是1、2、3,还剩下100-1-2-3=94,剩下四个活动需要尽量的接近,以保证”第四多“能够尽可能多,所以最好是四个连续的自然数,94÷4=23.5,所以这四个数分别为22、23、24、25,故正确答案为A。