|
时间:2017-01-16 22:14:44
1、单选题
某服装厂生产某种定型冬装,9月份销售每件冬装的利润是出厂价的25%(每件冬装的利润=出厂价-成本)。10月份将每件冬装的出厂价调低10%,成本降低10%,销售件数比9月份增长80%,那么该厂10月份销售这种冬装的利润比9月份的利润总额增长:( )
A. 2%
B. 8%
C. 40.5%
D. 62%
参考答案: D
本题解释:
【解析】D。设出厂价为100,则9月份单件利润是25,成本为75。10月的出厂价为90,成本为75×0.9=67.5,单件利润为90-67.5=22.5。设9月的销售量为1,则10月为1.8。9月总利润为25,10月为1.8×22.5=40.5,10月比9月总利润增长40.5÷25-1=62%。
2、单选题
某玩具店同时卖出一个拼装玩具和一架遥控飞机,拼装玩具66元,遥控飞机120元,拼装玩具赚了10%,而遥控飞机亏本20%,则这个商店卖出这两个玩具赚钱或是亏本多少( )
A. 赚了12元
B. 赚了24元
C. 亏了14元
D. 亏了24元
参考答案: D
本题解释:
D【解析】根据题意,拼装玩具赚了66÷(1+10%)×10%=6元,遥控飞机亏本120÷(1-20%)×20%=30元,故这个商店卖出这两个玩具亏本30-6=24元。
3、单选题
有关部门要连续审核30个科研课题方案,如果要求每天安排审核的课题个数互不相等且不为零,则审核完这些课题最多需要( )。
A. 7天
B. 8天
C. 9天
D. 10天
参考答案: A
本题解释:
【答案解析】1+2+3+4+5+6+7=28,再加一个2等于30,但因为是要互不相等,所以8天的情况和更多的情况都不符合,只能是7天,也就是1+2+3+4+5+6+9的情况,选A。
4、单选题
有20名工人修筑一段公路,计划15天完成。动工3天后抽出5人去其他工地,其余人继续修路。如果每人工作效率不变,那么修完这段公路实际用( )
A. 19天
B. 18天
C. 17天
D. 16天
参考答案: A
本题解释:
【答案】A。解析:5人12天完成的工作量分配给15人需要5×12÷15=4天完成,所以修完这段公路实际用15+4=19天。
5、单选题
河道赛道场长120米,水流速度为2米/秒,甲船速度为6米/秒,乙船速度为4米/秒。比赛进行两次往返,甲、乙同时从起点出发,先顺水航行,问多少秒后甲、乙船第二次迎面相遇?( )
A. 48
B. 50
C. 52
D. 54
参考答案: C
本题解释:
【答案】C。解析:甲船顺水速度为2+6=8米/秒,逆水速度为6-2=4米/秒;乙船顺水速度为2+4=6米/秒,逆水速度为4-2=2米/秒。
6、单选题
从一楼走到五楼,爬完一层休息30秒,一共要210秒,那么从一楼走到7楼,需要多少秒( )
A. 318
B. 294
C. 330
D. 360
参考答案: C
本题解释:
C【解析】从一点走到五楼,休息了三次,那么每爬上一次需要的时间为(210-30×3)÷(5-1)=30秒,故从一楼走到七楼需要30×(7-1)+30×(7-2)=330秒。
7、单选题
用6位数字表示日期,如980716表示的是1998年7月16日。如果用这种方法表示2009年的日期,则全年中六个数字都不相同的日期有多少天?( )
A. 12
B. 29
C. 0
D. 1
参考答案: C
本题解释:
正确答案是C
考点
多位数问题
解析
根据题目条件,显然要知道有多少个符合要求的日期,只需实际构造即可,而在构造的过程中,显然顺序是先安排月份,再安排具体日期。假设2009年AB月CD日,满足要求,它可以简写成“09ABCD”,由于月份当中不能有0,所以不能是01—10月,而11月有两个1,也应该排除,故AB=12;此时原日期可简写成“0912CD”,由于已经出现了0、1、2,所以肯定不是01—30号,而31号里又有1了,排除,因此满足题目要求的日期为0个,故正确答案为C。
标签
构造调整
8、单选题
小王忘记了朋友手机号码的最后两位数字,只记得倒数第一是奇数,则他最多要拨号多少次才能保证拨对朋友的手机号码?( )
A. 90
B. 50
C. 45
D. 20
参考答案: B
本题解释:
正确答案是B
考点
排列组合问题
解析
先考虑最后一位,有5种可能;再考虑倒数第二位,有10种可能,因此总的组合方法有5×10=50(种),故正确答案为B。
秒杀技
最后两位数可能情形共有100个,其中奇数的占一半,即50个,故正确答案为B。
9、单选题
某城市共有A、B、C、D、E五个区,A区人口是全市人口的5/17,B区人口是A区人口的2/5,C区人口是D区和E区人口总数的5/8,A区比C区多3万人,全市共有多少万人?( )
A. 20.4
B. 30.6
C. 34.5
D. 44.2
参考答案: D
本题解释:
正确答案是D
考点
和差倍比问题
解析
由A区人口是全市人口的5/17,将全市人口看做17份,则A区有5份,B区有2份,于是C、D、E三区共有10份,而在此三区中,C区人口是D区和E区人口总数的5/8,也即C区人口是此三区人口总数的5/13,因此C区人口为(5/13×10)份,于是A区比C区多5-50/13=15/13份,此部分人口数为3万人,于是全市共有3÷15/13×17=44.2(万人)。故正确答案为D。
标签
赋值思想
10、单选题
百货商场折价出售一商品,以八折出售的价格比原价少15元,问该商品的原价是多少元?( )
A. 65
B. 70
C. 75
D. 80
参考答案: C
本题解释:
C设原价为x元,则80%x+25=x,x=75元。
11、单选题
100个孩子按1、2、3…依次报数,从报奇数的人中选取k个孩子,他们所报数字之和为1949,问k最大值为多少?( )
A. 43
B. 44
C. 45
D. 46
参考答案: A
本题解释:
【答案】A。解析:奇数个奇数的和为奇数,故k的最大值应是奇数,排除B、D;从1开始,45个连续奇数的和是452>1949,排除C,此题答案为A。
12、单选题
杂货店分三次进了一些货物,已知每一次的进货单价都是上一次的80%,且第一次的进货单价为5元。已知这些货物恰好能够排成一个三层的空心方阵,且最内层、中间层和最外层恰好分别是第一、二、三次所进的货物,且最外层每边有7个货物。现要保证20%利润率的情况下,杂货店应该将货物至少定为多少元?( )
A. 3.90
B. 4.12
C. 4.36
D. 4.52
参考答案: D
本题解释:
【解析】D。三次的单价分别为5元、5×80%=4元、4×80%=3.2元。最外层有货物(7-1)x4=24个,中间层有24-8=16个,最内层有I6-8=8个。所以总进价为3.2x24+4xl6+5x8=l80.8元,要保证20%的利润率,货物定价为180.8x(1+20%)÷(24+16+8)=4.52元。
13、单选题
100个孩子按1、2、3……依次报数,从报奇数的人中选取k个孩子,他们所报数字之和为1949,问k最大值为多少?( )
A. 43
B. 44
C. 45
D. 46
参考答案: A
本题解释:
【答案】A。解析:奇数个奇数的和为奇数,故k的最大值应是奇数,排除B、D;从1开始,45个连续奇数的和是452>1949,排除C,此题答案为A。
14、单选题
书架的某一层上有136本书,且是按照“3本小说、4本教材、5本工具书、7本科书、3本小说、4本教材……”的顺序循环从左至右排列的。问该层最右边的一本是什么书?( )
A. 小说
B. 教材
C. 工具书
D. 科技书
参考答案: A
本题解释:
正确答案是A
考点
周期问题
解析
循环周期为3+4+5+7=19,136÷19=7……3,即7个周期多3本,则最右边的一本书是小说,故正确答案为A。
15、单选题
用3、9、0、1、8、5分别组成一个最大的六位数与最小的六位数,它们的差是( )。
A. 15125
B. 849420
C. 786780
D. 881721
参考答案: D
本题解释:
D最大的数为985310,最小的数为103589,故它们的差为881721。
16、单选题
同时打开游泳池的A,B两个进水管,加满水需1小时30分钟,且A管比B管多进水180立方米,若单独打开A管,加满水需2小时40分钟,则B管每分钟进水多少立方米?( )
A. 6
B. 7
C. 8
D. 9
参考答案: B
本题解释:
正确答案是B
考点
工程问题
解析
解析1:设B管每分钟进水x立方米,则A管每分钟进水为x+2立方米,根据题意可得(2x+2)×90=(x+2)×160,解得x=7。故正确答案为B。
解析2:由A、B两管合作加水90分钟,加满水池且A管比B管多进水180立方米,首先可知A管比B管每分钟多进水2立方米,其次可知若A管自己单独灌水90×2=180(分钟),则也可灌满水池,且多灌180立方米(此处原理即用A代替B工作,看差异情况),而题中又告知A管单独工作只需160分钟即可灌满水,因此可知多灌的180立方米用时为180-160=20(分钟),因此A管的效率为每分钟9立方米,于是可知B管每分钟进水7立方米。故正确答案为B。
标签
差异分析
17、单选题
某城市9月平均气温为28.5度,如当月最热日和最冷日的平均气温相差不超过10度,则该月平均气温在30度及以上的日子最多有多少天?( )
A. 24
B. 25
C. 26
D. 27
参考答案: B
本题解释:
正确答案是B
考点
多位数问题
解析
要使30度以上的天数尽可能多,在气温总和一定的情况下,则必然是其他天的温度尽可能低,而由最热日与最冷日的平均气温相差不超过10度,据此构造极端情况,最热天全部为30度,其余天数为最冷天,温度为20度,设平均气温为30度的天数为Y,则可得30Y+20(30-Y)=30×28.5,解得Y=25.5,因此最多有25天。故正确答案为B。
标签
构造调整
18、单选题
一只装有动力桨的船,其单靠人工划船顺流而下的速度是水速的3倍。现该船靠人工划动从A地顺流到达B地,原路返回时只开足动力桨行驶,用时比来时少2/5。问船在静水中开足动力浆行驶的速度是人工划船速度的多少倍?()
A. 2
B. 3
C. 4
D. 5
参考答案: B
本题解释:
B[解析]设水速是1,则顺水速度为3,人工划船静水速度=3-1=2,顺水时间:逆水时间=1: (1-2/5)=5:3,则顺水速度:逆水速度=3:5,所以逆水速度为5,动力桨静水速度=5+1=6,比例为6:2=3:1
19、单选题
100人参加7项活动,已知每个人只参加一项活动,而且每项活动参加的人数都不一样,那么,参加人数第四多的活动最多有几个人参加?( )
A. 22
B. 21
C. 24
D. 23
参考答案: A
本题解释:
正确答案是A
考点
多位数问题
解析
要保证“第四多的活动越多越好”,那么我们要求"其他活动的人越少越好“,其中有三个比其多,另外三个比其少,比”第四多“的少的最少的就是1、2、3,还剩下100-1-2-3=94,剩下四个活动需要尽量的接近,以保证”第四多“能够尽可能多,所以最好是四个连续的自然数,94÷4=23.5,所以这四个数分别为22、23、24、25,故正确答案为A。
20、单选题
某城市居民用水价格为:每户每月不超过5吨的部分按4元/吨收取,超过5吨不超过10吨的部分按6元/吨收取,超过10吨的部分按8元/吨收取。某户居民两个月共交水费108元,则该户居民这两个月用水总量最多为多少吨?( )
A. 21
B. 24
C. 17.25
D. 21.33
参考答案: A
本题解释:
正确答案是A
考点
分段计算问题
解析
在花费相同的情况下,要使两个月用水量最多,须使水价相对较便宜阶段的用水量最大,即两个月的“不超过5吨”和“5吨到10吨”部分的水量尽量多,通过计算2×(4×5+6×5)=100元,剩余180-100=8元,由于超出10吨的部分按8元/吨收取,故用水量为2×10+1=21吨。故正确答案为A。
21、单选题
某船第一次顺流航行21千米又逆流航行4千米,第二天在同一河道中顺流航行12千米,逆流航行7千米,结果两次所用的时间相等。假设船本身速度及水流速度保持不变,则顺水船速与逆水船速之比是( )。
A. 2.5:1
B. 3:1
C. 3.5:1
D. 4:1
参考答案: B
本题解释:
正确答案是B
考点行程问题解析解析1:设顺水和逆水船速分别为a、b,根据题意又21/a+4/b=12/a+7/b,解得a/b=3,答案为B。
解析2:两次航行时间相等,除去顺水和逆水航行相同的距离,21-12=9千米,7-4=3千米,说明顺水行驶9千米与逆水行驶3千米所用的时间相等,行驶的路程比为9:3=3:1,因此速度比为3:1,故正确答案为B。
22、单选题
1000克苹果价值2.4元,柚子的价格比苹果贵一倍,如果两个柚子的重量等于5个每个重100克的苹果,3.6元能买多少个柚子?( )
A. 3
B. 4
C. 6
D. 10
参考答案: A
本题解释:
A两个柚子重500克,即1个柚子重250克,由题意可知,1000克柚子的价格为4.8元,所以250克柚子为1.2元,即1个柚子1.2元,所以3.6元可买3个柚子。
23、单选题
一个空的容积为64 升的鼓形圆桶上有A、B 两孔,一种蒸馏水从A 孔流入同 时从B 孔流出,如果通过A 孔的流速为3 升/小时,那么在B 孔的流速为多少升时才能保证用96 小时恰好装满容器?( )
A. 4/3
B. 8/3
C. 7/3
D. 3/7
参考答案: C
本题解释:
【答案】C[解析]从A孔流入同时从B孔流出,设流速X,则容器实际蓄水速度为3-X,所以64/(3-X)=96,求出X=7/3。
24、单选题
一杯糖水,第一次加入一定量的水后,糖水的含糖百分比变为15%;第二次又加入同样多的水,糖水的含糖百分变比为12%;第三次再加入同样多的水,糖水的含糖百分比将变为多少?( )
A. 8%
B. 9%
C. 10%
D. 11%
参考答案: C
本题解释:
【答案】C。解析:设第一次加水后糖水总量为100,糖为100×15%=15,则第二次加水后糖水变为15÷12%=125,所以每次加入的水为125-100=25,故第三次加水后糖水的含糖百分比为15÷(125+25)=10%。
25、单选题
某高校2006年度毕业学生7650名,比上年度增长2%,其中本科生毕业数量比上年度减少2%,而研究生毕业数量比上年度增加10%,那么,这所高校今年毕业的本科生有( )。
A. 3920人
B. 4410人
C. 4900人
D. 5490人
参考答案: C
本题解释:
正确答案是C
考点和差倍比问题解析假设去年研究生毕业数为A,本科生毕业数为B,那么今年研究生毕业数为1.1A,本科生毕业数为0.98B。由题意知:A+B=7650÷(1+2%),1.1A+0.98B=7650,解得B=5000人。则今年本科生毕业数量为5000×0.98=4900人,故正确答案为C。
秒杀技由“本科生比上年度减少2%”可知“今年本科生数=98%×去年本科生数”(注意98%是百分数,本质上也是个分数),所以今年本科生应能够被49整除。由“研究生毕业数量比上年增加10%”知“今年研究生数=110%×去年研究生数”,所以今年研究生数应能够被11整除,据此两条得出正确答案为C。
26、单选题
某校按字母A到Z的顺序给班级编号,按班级编号加01、02、03……,给每位学生按顺序定学号,若A~K班级人数从15人起每班递增1名,之后每班按编号顺序递减2名,则第256名学生的学号是多少?( )
A. M12
B. N11
C. N10
D. M13
参考答案: D
本题解释:
正确答案是D
考点
多位数问题
解析
此题对应数列呈先升后降趋势,根据题意可明确给出班级人数数列,待求第256名学生的位置,由题意知A班有15人,B班有16人,……,递增到K班25人,然后L班23人,逐班减少。结合四个选项可知,第256名学生不是在M班,就是在N班,此即帮助限定范围,于是直接计算从A班到L班的学生总数为15+16+……+25+23=(15+25)÷2×11+23=243(人),距离256为13,可知第256名学生的学号为M13,故正确答案为D。
27、单选题
现有式样、大小完全相同的四张硬纸片,上面分别写了1、2、3、4四个不同的数字,如果不看数字,连续抽取两次,抽后仍旧放还,则两次都抽到2的概率是( )。
A. 1/2
B. 1/4
C. 1/8
D. 1/16
参考答案: D
本题解释:
【解析】两次都抽到2的概率是1/4*1/4=1/16,选D。
28、单选题
张先生向商店订购某种商品80件,每件定价100元。张先生向商店经理说:“如果你肯减价,每件减1元,我就多订购四件。”商店经理算了一下,如果减价5%,由于张先生多订购,仍可得与原来一样多的利润。则这种商品每件的成本是( )。
A. 75元
B. 80元
C. 85元
D. 90元
参考答案: A
本题解释:
正确答案是A
考点经济利润问题解析设该商品每件成本x元,则未减价前每件利润为(100-x)元,减价5%后每件利润为(95-x)元,订购数量为(80+5×4)件,根据题意有80×(100-x)=(95-x)×(80+5×4),解得x=75,故正确答案为A。
29、单选题
一个班的学生排队,如果排成3人一排的队列,则比2人一排的队列少8排;如果排成4人一排的队列,则比3人一排的队列少5排,这个班的学生如果按5人一排来排队的话,队列有多少排?( )
A. 9
B. 10
C. 11
D. 12
参考答案: C
本题解释:
正确答案是C
考点
不定方程问题
解析
注意到几人一排时,未必恰好整除,而在不整除的时候剩余人数仍构成一排,据此可知本题若列方程将不能得到一个确切方程,故解题方法为代入法。
将A代入,则学生人数在41到45之间,择其最大者进行验证。45人满足排成3人一排的队列比排成2人一排的队列少8排,但排成4人一排的队列比3人一排的队列少3排,故45人不正确。并且此时排成4人一排的队列比3人一排的队列所少的排数低于题中给出的5,而要想排数差值增大,则需学生人数更多,因此41到45之间的数字肯定都不符合要求,故A不正确。(这也是为什么要择所得数字中最大者验证。)
将B代入,则学生人数在46到50之间,择其最大者进行验证。学生人数为50人时,排成4人一排的队列比3人一排的队列少4排,故不符合,且类似上面分析可知B选项不正确。
将C选项代入,则学生人数在51到55之间,择其最大者进行验证。学生人数为55人时,排成4人一排的队列比3人一排的队列少5排,符合要求,而其排成3人一排的队列比2人一排的队列少9排,因此学生人数应少于55人。依次验证其余可知学生人数为52人满足要求。故正确答案为C。
30、单选题
大学的小李和b大学的小孙分别从自己学校同时出发,不断往返于a、b两校之间。现已知小李的速度为85米/分钟,小孙的速度为105米/分钟,且经过12分钟后两人第二次相遇。问a、b两校相距多少米?( )
A. 1140米
B. 980米
C. 840米
D. 760米
参考答案: D
本题解释:
【答案解析】设两校相距s米,则第二次相遇两人的路程和为3s米,有3s=(85+105)×12,解得s=760。
31、单选题
甲、乙两人卖数量相同的萝卜,甲打算卖1元2个,乙打算卖1元3个。如果甲乙两人一起按2元5个的价格卖掉全部的萝卜,总收入会比预想的少4元钱。问两人共有多少个萝卜?( )
A. 420
B. 120
C. 360
D. 240
参考答案: D
本题解释:
正确答案是D
考点
经济利润问题
解析
设原来的萝卜共有a个,则每个人都有a/2个萝卜,根据题意有:(1/2×a/2+1/3×a/2)-2a/5=4,解得a=240,故正确答案为D。
秒杀技
由题意可知甲打算15元30个,乙打算10元30个,即25元60个。合在一起则为24元60个,也即每60个萝卜少卖1元,因此少卖4元应为240个,这里的30的由来是从2、3、5的最小公倍数想到的。
32、单选题
一个水库在年降水量不变的情况下,能够维持全市12万人20年的用水量,在该市新迁入3万人之后,该水库只够维持15年的用水量,市政府号召节约用水,希望能将水库的使用寿命提高到30年。那么,该市市民平均需要节约多少比例的水才能实现政府制定的目标?( )
A. 2/5
B. 2/7
C. 1/3
D. 1/4
参考答案: A
本题解释:
正确答案是A
考点
牛吃草问题
解析
假设原有水量为X,单位时间进水量Y,根据题意可得:X=(12-Y)×20,X=(15-Y)×15,解得X=180,Y=3。假设用30年可供N万人次,则可得,180=(N-3)×30,解得N=9。也即15万人的用水量相当于9万人,因此节水比例为2/5,故正确答案为A。
33、单选题
一种溶液,蒸发掉一定量的水后,溶液的浓度为10%;再蒸发掉同样多的水后,溶液的浓度变为12%;第三次蒸发掉同样多的水后,溶液的浓度将变为多少?( )
A. 14%
B. 17%
C. 16%
D. 15%
参考答案: D
本题解释:
正确答案是D
考点
浓度问题
解析
在蒸发的过程中,溶液的量发生变化,但其中溶质保持不变,因此将溶质作为解题突破口,给溶质赋值。为方便后面的计算,设其溶质为60,则可知其浓度在10%时,溶液量为600,其浓度在12%时,溶液量为500。这说明在变化过程中蒸发掉了水为100。因此第三次蒸发同样多的水后,溶液还剩400,故其浓度为15%。故正确答案为D。
标签
赋值思想
34、单选题
已知一个长方体的长、宽、高分别为10分米、8分米和6分米,先从它上面切下一个最大的正方体,然后再从剩下的部分上切下一个最大的正方体。问切除这两个正方体后,最后剩下部分的体积是多少?( )
A. 212立方分米
B. 200立方分米
C. 194立方分米
D. 186立方分米
参考答案: B
本题解释:
【答案解析】根据题意可知,第一次切下的正方体的边长为6分米,第二次切下的正方体的边长为4分米,故最后剩下部分的体积是10×8×6-6×6×6-4×4×4=200立方分米。
35、单选题
有一个正方形花池,周围用边长25cm的方砖铺了一条宽1.5米的小路,共用1776块。花池的面积是多少平方米?( )
A. 111
B. 289
C. 400
D. 10404
参考答案: B
本题解释:
【答案】B[解析]水池周围的面积是0.25×0.25×1776=111, 设外围正方形边长X,花池小正方形边长Y,则有X2-Y2=111, 20的平方是400,17的平方是289,400-289刚好是111(熟记20以内平方的好处…),所以花池面积就是289,选B。
36、单选题
一个慢钟每小时比标准时间慢5分钟,一个快钟每小时比标准时间快3分钟。如果将两个钟同时调到标准时间,在24个小时内的某个时间,慢钟显示7:50,快钟显示9:10。那么此时的标准时间应该是什么?( )
A. 8:20
B. 8:30
C. 8:40
D. 8:50
参考答案: C
本题解释:
C.【解析】这是一道快慢钟问题。快钟每小时比慢钟快8分钟,而7:50与9:10之间相差80分钟,则此时距离将两个钟调成标准时间为80÷8=10个小时,10个小时的时间,慢钟共少走了5×10=50分钟,则标准时间应该为8:40。因此,本题的正确答案为C选项。
37、单选题
共有100个人参加某公司的招聘考试,考试内容共有5道题,1-5题分别有80人,92人,86人,78人,和74人答对,答对了3道和3道以上的人员能通过考试,请问至少有多少人能通过考试?( )
A. 30
B. 55
C. 70
D. 74
参考答案: C
本题解释:
正确答案是C
考点
容斥原理问题
解析
1-5题分别错了20、8、14、22、26人,加起来为90。逆向考虑,为了让更多的人不及格,这90道错题分配的时候应该尽量的3道分给一个人,即可保证一个人不及格,所以一共可以分给最多30个人,让这30个人不及格,所以及格的至少会有70人。故正确答案为C。
标签
三集合容斥原理公式逆向考虑
38、单选题
某公司甲、乙两个营业部共有50人,其中32人为男性。已知甲营业部的男女比例为5:3,乙营业部的男女比例为2:1,问甲营业部有多少名女职员?( )
A. 18
B. 16
C. 12
D. 9
参考答案: C
本题解释:
正确答案是C
考点
和差倍比问题
解析
设甲营业部有3X名女职员,乙营业部有Y名女职员,则有5X+2Y=32;32+3X+Y=50,解得X=4,Y=6,故甲营业部有3×4=12名女职员,故正确答案为C。
秒杀技
有题意可知,两个营业部共有50-32=18名女职员,排除A。根据“乙营业部的男女比例为2:1”可知,乙营业部的男职员为偶数,由于男职员的总人数为偶数,则甲营业部的男职员人数同样为偶数。根据“已知甲营业部的男女比例为5:3”,甲营业部的女职员人数能同时被2和3整除,排除B、D,故正确答案为C。
39、单选题
现有21朵鲜花分给5人,若每个人分得的鲜花数各不相同,则分得鲜花最多的人至少分得( )朵鲜花。
A. 7
B. 8
C. 9
D. 10
参考答案: A
本题解释:
正确答案是A
考点多位数问题解析要使分得最多花的人分到的花尽可能的少,那么其他人分到的花尽可能的多。5人分到的花应尽量接近,以保证分得最多花的人分到的花尽可能少,所以最好是5个连续的自然数,21÷5=4.2,所以5人先分花数为2、3、4、5、6。2+3+4+5+6=20,还剩1朵花未分出。剩下的1朵花只能分给之前分到6朵花的人。则分得最多的人至少分得7朵鲜花,正确答案为A。
40、单选题
篮球规则中得分有3分,2分,1分,若在一次比赛中,队员A一人得了13分,那么他的得分组合共( )种。
A. 18
B. 19
C. 20
D. 21
参考答案: D
本题解释:
D[解析]当A的3分分别拿到4,3,2,1,0次的时候,对应的组合数分别是1,3,4,6,7,所以A的得分组合共有1+3+4+6+7=21种,选D。
41、单选题
甲、乙两人在长30米的泳池内游泳,甲每分钟游37.5米,乙每分钟游52.5米,两人同时分别从泳池的两端出发,触壁后原路返回,如是往返。如果不计转向的时间,则从出发开始计算的1分50秒内两人共相遇了多少次?( )
A. 2
B. 3
C. 4
D. 5
参考答案: B
本题解释:
正确答案是B
考点
行程问题
解析
解析1:题目的关键在于第一次相遇,两人游过长度之和为泳池长,之后每次相遇,都需要两人再游过两个泳池长。两人一起游一个泳池长,所需时间为30÷(37.5+52.5)×60=20(秒),因此两人分别在20秒时、60秒时、100秒时相遇,共相遇3次。故正确答案为B。
解析2:关键点同解析1。直接求出1分50秒两人合起来游过的距离为(37.5+52.5)×110÷60=165(米),为5.5个泳池长。而两人相遇时都恰是合起来游过距离为奇数个泳池长时,也即两人分别在合游1个、3个、5个泳池长时相遇,故共相遇3次。故正确答案为B。
解析3:套用公式。先看迎面相遇,30×(2N-1)≤(37.5+52.5)×11/6,得N≤3.25,即有3次迎面相遇;再看追上相遇,30×(2N-1)≤(52.5-37.5)×11/6,得N≤23/24,即没有追及相遇。故总的相遇次数为3次。故正确答案为B。
公式:两运动体从两端同时出发,相向而行,不断往返:
第N次迎面相遇,两运动体路程和=全程×(2N-1);
第N次追上相遇,两运动体路程差=全程×(2N-1)。
标签
公式应用
42、单选题
200除500,商2余100,如果被除数和除数都扩大3倍,则余数是( )。
A. 100
B. 200
C. 300
D. 100000
参考答案: C
本题解释:
【解析】商不变,余数跟着扩大3倍,所以是300,选C。
43、单选题
有8种颜色的小球,数量分别为2、3、4、5、6、7、8、9,将它们放进一个袋子里面,问拿到同颜色的球最多需要几次?( )
A. 6
B. 7
C. 8
D. 9
参考答案: D
本题解释:
【答案解析】解析:"抽屉原理"问题。先从最不利的情况入手,最不利的情况也就使次数最多的情况。即8种小球,每次取一个,且种类不相同(这就是最不利的情况)。然后任取一个,必有重复的,所以是最多取9个。
44、单选题
某商场促销,晚上八点以后全场商品在原来折扣基础上再打9.5折,付款时满400元再减100元,已知某鞋柜全场8.5折,某人晚上九点多去该鞋柜买了一双鞋,花了384.5元,问这双鞋的原价为多少钱?( )
A. 550
B. 600
C. 650
D. 700
参考答案: B
本题解释:
正确答案是B
考点
经济利润问题
解析
有题意,鞋的原价为(384.5+100)/(0.85×0.95)=484.5/(0.85×0.95),计算量比较大,而只要注意到分子484.5中含有因数3,而因数3没有被分母约掉,所以必然保留到最后结果中,而四个选项中只有B可以被3整除,故正确答案为B。
秒杀技
假设这双鞋的原价是N,则根据题意:N×0.85×0.95=384.5+100,观察此等式也可得到答案。注意到上述等式的右边小数点后仅一位数字,而等式左侧除N外小数点后有四位小数,要使得等式成立,则首先小数点后的数字位数必然一样,因此N要能够将小数点后四位数字变成只有1为数字,显然只有B符合要求。故正确答案为B。
标签
数字特性
45、单选题
某剧院有25排座位,后一排比前一排多2个座位,最后一排有70个座位。这个剧院一共有多少个座位?( )
A. 1104
B. 1150
C. 1170
D. 1280
参考答案: B
本题解释:
B[解析]最后一排有70个坐位,则前面24排每一排少两个,第一排有70-24×2=22,构成一个等差数列,公差为2,首项为22,S25=25×22+(25×24×2)÷2=1150个,选择B。
46、单选题
某商场有7箱饼干,每箱装的包数相同,如果从每箱里拿出25包饼干,那么,7个箱里剩下的饼干包数相当于原来的2箱饼干,原来每箱饼干有多少包?( )。
A. 25
B. 30
C. 50
D. 35
参考答案: D
本题解释:
【解析】比较简单,可以直接列方程:7(X-25)=2X,所以X=35,选D。
47、单选题
小赵,小钱,小孙一起打羽毛球,每局两人比赛,另一人休息,三人约定每一局的输方下一局休息,结束时算了一下,小赵休息了2局,小钱共打了8局,小孙共打了5局,则参加第9局比赛的是( )。
A. 小钱和小孙
B. 小赵和小钱
C. 小赵和小孙
D. 以上皆有可能
参考答案: B
本题解释:
正确答案是B
考点
统筹规划问题
解析
本题关键在于三 个人打羽毛球,一个人休息的时候必然是另外两个人比赛的时候。因此条件“小赵休息了2局”,说明小钱和小孙对战了2局,则两人其余的比赛都是和小赵进行的,于是总的比赛局数为8+5-2=11局。三人比赛中,任何一个人不可能连续休息两场,也即每个人的休息场次只能是间隔的,而11局比赛中小孙打了5局,休息了6局,那么他只能是这11局中的第2、4、6、8、10局中上场。因此第9局比赛中小孙没有上场,也即参加比赛的是小赵和小钱。故正确答案为B。
48、单选题
甲、乙两个容器均有50厘米深,底面积之比为5:4,甲容器水深9厘米,乙容器水深5厘米,再往两个容器各注入同样多的水,直到水深相等,这时两容器的水深是( )。
A. 20厘米
B. 25厘米
C. 30厘米
D. 35厘米
参考答案: B
本题解释:
正确答案是B
考点几何问题解析设注入水后的水深为y厘米,则根据注入水同样多,可知(y-9)×5=(y-5)×4,解得y=25,故正确答案为B。
49、单选题
有300名求职者参加高端人才专场招聘会,其中软件设计类、市场营销类、财务管理类和人力资源管理类分别有100、80、70和50人。问至少有多少人找到工作,才能保证一定有70名找到工作的人专业相同?( )
A. 71
B. 119
C. 258
D. 277
参考答案: C
本题解释:
正确答案是C
考点
抽屉原理问题
解析
考虑对这些人进行分配,在使得每个专业人数不足70的情况下尽可能的增加就业人数,则四类专业可就业的人数分别为69、69、69、50,总和为257人。此时再多1人,则必然有一个专业达到70人,因此所求最少人数为258人,故正确答案为C。
标签
构造调整
50、单选题
一果农想将一块平整的正方形土地分割为四块小土地,并将果树均匀整齐地种在土地的所有边界上,且在每块土地的四个角上都种上一棵果树,该果农未经细算就购买了60颗果树,如果仍按上述想法种植,那他至少多买了( )棵果树。
A. 0
B. 3
C. 6
D. 15
参考答案: B
本题解释:
【答案解析】本题可利用整除特征性求解,分割成4个小正方形后共有9个顶点,12条边,设每条边(不算顶点)种x棵树,则可种12x+9棵,使总棵树小于60的最大x为4,此时可种57棵树,剩余3棵,所以正确答案为B项。