|
时间:2017-01-10 07:51:42
1、单选题
有一工作,甲做2天后乙接着做,做了10天后完成了工作。已知乙单独完成需要30天,那么甲单独完成此工作需要( )天。
A. 3天
B. 1天
C. 10天
D. 2天
参考答案: A
本题解释:
【答案解析】由题可知,甲做2天,相当于乙做20天,则乙做30天的工作,甲3天即可完成。
2、单选题
从12时到13时,钟的时针与分针可成直角的机会有( )。
A. 1次
B. 2次
C. 3次
D. 4次
参考答案: B
本题解释:
【答案解析】一个小时内成直角只有两次,选B。
3、单选题
用3、9、0、1、8、5分别组成一个最大的六位数与最小的六位数,它们的差是( )。
A. 15125
B. 849420
C. 786780
D. 881721
参考答案: D
本题解释:
D最大的数为985310,最小的数为103589,故它们的差为881721。
4、单选题
某汽车厂离生产甲、乙、丙三种车型,其中乙型产量的3倍与丙型产量的6倍之和等于甲型产量的4倍,甲型产量与乙型的2倍之和等于丙型产量的7倍。则甲、乙、丙三型产量之比为( )。
A. 5:4:3
B. 4:3:2
C. 4:2:1
D. 3:2:1
参考答案: D
本题解释:
正确答案是D
考点
和差倍比问题
解析
设甲的产量为x,乙的产量为y,丙的产量为z。则可得如下:
3y+6z=4x,x+2y=7z,两式相加可得3x+z=5y,直接带入选项,只有D符合,故正确答案为D。
秒杀技
得到3y+6z=4x后,观察该式,可知x应为3的倍数,只有D符合。
标签
直接代入
5、单选题
从1、2、3、4、5、6、7、8、9中任意选三个数,使他们的和为偶数,则有多少种选法?( )
A. 40
B. 41
C. 44
D. 46
参考答案: C
本题解释:
【答案解析】:选C,形成偶数的情况:奇数+奇数+偶数=偶数;偶数+偶数+偶数=偶数=>其中,奇数+奇数+偶数=偶数=>C(2,5)[5个奇数取2个的种类]×C(1,4)[4个偶数取1个的种类]=10×4=40,偶数+偶数+偶数=偶数=>C(3,4)=4[4个偶数中选出一个不要],综上,总共4+40=44
6、单选题
四人进行篮球传接球练习,要求每人接到球后再传给别人,开始由甲发球,并作为第一次传球。若第五次传球后,球又回到甲手中,则共有传球方式多少种:( )
A. 60;
B. 65;
C. 70;
D. 75;
参考答案: A
本题解释:
【答案解析】:选A,球第一次与第五次传到甲手中的传法有:C(1,3)×C(1,2)×C(1,2)×C(1,2)×C(1,1)=3×2×2×2×1=24,球第二次与第五次传到甲手中的传法有:C(1,3)×C(1,1)×C(1,3)×C(1,2)×C(1,1)=3×1×3×2×1=18,球第三次与第五次传到甲手中的传法有:C(1,3)×C(1,2)×C(1,1)×C(1,3)×C(1,1)=3×2×1×3×1=18,24+18+18=60种,具体而言:分三步:
(1)在传球的过程中,甲没接到球,到第五次才回到甲手中,那有3×2×2×2=24种,第一次传球,甲可以传给其他3个人,第二次传球,不能传给自己,甲也没接到球,那就是只能传给其他2个人,同理,第三次传球和第四次也一样,有乘法原理得一共是3×2×2×2=24种。
(2)因为有甲发球的,所以所以接下来考虑只能是第二次或第三次才有可能回到甲手中,并且第五次球才又回到甲手中。当第二次回到甲手中,而第五次又回到甲手中,故第四次是不能到甲的,只能分给其他2个人,同理可得3×1×3×2=18种。
(3)同理,当第三次球回到甲手中,同理可得3×3×1×2=18种。最后可得24+18+18=60种
7、单选题
大学的小李和b大学的小孙分别从自己学校同时出发,不断往返于a、b两校之间。现已知小李的速度为85米/分钟,小孙的速度为105米/分钟,且经过12分钟后两人第二次相遇。问a、b两校相距多少米?( )
A. 1140米
B. 980米
C. 840米
D. 760米
参考答案: D
本题解释:
【答案解析】设两校相距s米,则第二次相遇两人的路程和为3s米,有3s=(85+105)×12,解得s=760。
8、单选题
100个孩子按1、2、3……依次报数,从报奇数的人中选取k个孩子,他们所报数字之和为1949,问k最大值为多少?( )
A. 43
B. 44
C. 45
D. 46
参考答案: A
本题解释:
【答案】A。解析:奇数个奇数的和为奇数,故k的最大值应是奇数,排除B、D;从1开始,45个连续奇数的和是452>1949,排除C,此题答案为A。
9、单选题
乘火车从甲城到乙城,1998年初需要19.5小时,1998年火车第一次提速30%,1999年第二次提速25%,2000年第三次提速20%。经过三次提速后,从甲城到乙城乘火车只需要( )。
A. 8.19小时
B. 10小时
C. 14.63小时
D. 15小时
参考答案: B
本题解释:
正确答案是B
考点行程问题解析设1998年火车的速度为v,三次提速后所需时间为t,三次提速后速度为(1+30%)×(1+25%)×(1+20%)vt=19.5v,解得t=10。因此正确答案为B。
10、单选题
共有100个人参加某公司的招聘考试,考试内容共有5道题,1-5题分别有80人,92人,86人,78人,和74人答对,答对了3道和3道以上的人员能通过考试,请问至少有多少人能通过考试?( )
A. 30
B. 55
C. 70
D. 74
参考答案: C
本题解释:
正确答案是C
考点
容斥原理问题
解析
1-5题分别错了20、8、14、22、26人,加起来为90。逆向考虑,为了让更多的人不及格,这90道错题分配的时候应该尽量的3道分给一个人,即可保证一个人不及格,所以一共可以分给最多30个人,让这30个人不及格,所以及格的至少会有70人。故正确答案为C。
标签
三集合容斥原理公式逆向考虑
11、单选题
一公司销售部有4名区域销售经理,每人负责的区域数相同,每个区域都正好有两名销售经理负责,而任意两名销售经理负责的区域只有1个相同。问这4名销售经理总共负责多少个区域的业务?( )
A. 12
B. 8
C. 6
D. 4
参考答案: C
本题解释:
正确答案是C
考点
容斥原理问题
解析
由题意,每个区域正好有两名销售经理负责,可知2个经理一组对应一个区域;而根据,任意两名销售经理负责的区域只有1个相同,可知2个经理一组仅对应一个区域。由此两条可知,区域数其相当于从4个经理中任选2个有多少种组合,一种组合就对应一个区域,故共有6个区域。因此正确答案为C。
12、单选题
小王忘记了朋友手机号码的最后两位数字,只记得倒数第一是奇数,则他最多要拨号多少次才能保证拨对朋友的手机号码?( )
A. 90
B. 50
C. 45
D. 20
参考答案: B
本题解释:
正确答案是B
考点
排列组合问题
解析
先考虑最后一位,有5种可能;再考虑倒数第二位,有10种可能,因此总的组合方法有5×10=50(种),故正确答案为B。
秒杀技
最后两位数可能情形共有100个,其中奇数的占一半,即50个,故正确答案为B。
13、单选题
某村有甲乙两个生产小组,总共50人,其中青年人共13人。甲组中青年人与老年人的比例是2∶3,乙组中青年人与老年人的比例是1∶5,甲组中青年人的人数是:( )
A. 5人
B. 6人
C. 8人
D. 12人
参考答案: C
本题解释:
【答案】C。解析:设甲组人数为5x,乙组人数为6y。有,解得x=4。因此甲组青年人的人数为8。
14、单选题
某儿童艺术培训中心有5名钢琴教师和6名拉丁舞教师,培训中心将所有的钢琴学员和拉丁舞学员共76人分剐平均地分给各个老师带领,刚好能够分完,且每位老师所带的学生数量都是质数。后来由于学生人数减少,培训中心只保留了4名钢琴教师和3名拉丁舞教师,但每名教师所带的学生数量不变,那么目前培训中心还剩下学员多少人?( )
A. 36
B. 37
C. 39
D. 41
参考答案: D
本题解释:
正确答案是D
考点
函数最值问题
解析
假定每个钢琴教师带x个学生,每个拉丁舞教师带y个学生,则根据题意有:5x+6y=76。根据此方程,可知x必为偶数,而x与y均为质数,因此x=2,代回可得y=11。于是在学生人数减少后,还剩下学员为4×2+3×11=41个,故正确答案为D。
标签
数字特性
15、单选题
一个五位数,左边三位数是右边两位数的5倍,如果把右边的两位数移到前面,则所得新的五位数要比原来的五位数的2倍还多75,则原来的五位数是( )。
A. 12525
B. 13527
C. 17535
D. 22545
参考答案: A
本题解释:
【答案解析】直接代入,选A。
16、单选题
一列快车和一列慢车相对而行,其中快车的车长200米,慢车的车长250米,坐在慢车上的旅客看到快车驶过其所在窗口的时间是6秒钟,坐在快车上的旅客看到慢车驶过其所在窗口的时间是多少秒钟?( )
A. 6秒钟
B. 6.5秒钟
C. 7秒钟
D. 7.5秒钟
参考答案: D
本题解释:
【答案解析】解析:追击问题的一种。坐在慢车看快车=>可以假定慢车不动,此时,快车相对速度为V(快)+V(慢),走的路程为快车车长200;同理坐在快车看慢车,走的距离为250,由于两者的相对速度相同=>250/x=200/6=>x=7.5(令x为需用时间)。
17、单选题
2003年8月1日是星期五,那么2005年8月1日是( )。
A. 星期一
B. 星期二
C. 星期三
D. 星期四
参考答案: A
本题解释:
正确答案是A
考点星期日期问题解析2004年是闰年,有366天,所以2003年8月1日与2005年8月1日之间共有(365+366)天。365+366=350+14+1+350+14+2,即(365+366)÷7的余数为3,因此2005年8月1日是星期五过三天,也即为星期一,因此正确答案为A。
18、单选题
两个相同的瓶子装满酒精溶液,一个瓶子中酒精与水的体积比是3:1,另一个瓶子中酒精与水的体积比是4:1,若把两瓶酒精溶液混合,则混合后的酒精和水的体积之比是多少?( )
A. 31:9
B. 7:2
C. 31:40
D. 20:11
参考答案: A
本题解释:
【答案解析】(3/4+4/5)/(1/4+1/5)=31:9
19、单选题
某人在公共汽车上发现一个小偷向相反方向步行,10秒钟后他下车去追小偷,如果他的速度比小偷快一倍,比汽车慢4/5,则此人追上小偷需要( )。
A. 20秒
B. 50秒
C. 95秒
D. 110秒
参考答案: D
本题解释:
正确答案是D
考点行程问题解析根据题中三者速度的比例关系,设此人、小偷和汽车的速度分别为2、1、10,10秒钟后此人下车时,与小偷的距离为10×(10+1)=110,与小偷的速度差为1,因此所需时间为110秒,故正确答案为D。
20、单选题
某商场举行周年让利活动,单件商品满300减180元,满200减100元,满100减40元;若不参加活动则打5.5折。小王买了价值360元,220元,150元的商品各一件,最少需要多少元钱?( )
A. 360
B. 382.5
C. 401.5
D. 410
参考答案: B
本题解释:
【答案】B。解析:如下表:
[img]http://www.zjgwy.org/files/1001/20121130094639_19279.jpg[/img]
因此最少需要180+120+82.5=382.5元。
21、单选题
对某单位的100名员工进行调查,结果发现他们喜欢看球赛和电影、戏剧。其中58人喜欢看球赛,38人喜欢看戏剧,52人喜欢看电影,既喜欢看球赛又喜欢看戏剧的有18人,既喜欢看电影又喜欢看戏剧的有16人,三种都喜欢看的有12人,则只喜欢看电影的有( )。
A. 22人
B. 28人
C. 30人
D. 36人
参考答案: A
本题解释:
【答案解析】本题可以使用阴影覆盖法,即100-(40+18+20)=22(人),故远A项。
22、单选题
某鞋业公司的旅游鞋加工车间要完成一出口订单,如果每天加工50 双,要比原计划晚3 天完成,如果每天加工60 双,则要比原计划提前2 天完成,这一订单共需要加工多少双旅游鞋?( )
A. 1200 双
B. 1300 双
C. 1400 双
D. 1500 双
参考答案: D
本题解释:
【答案】D[解析]能被50、60整除的,排除B和C,再依次代入A和D,A不符合,所以选D。
23、单选题
甲、乙、丙三种货物,如果购买甲3件、乙7件、丙1件需花3.15元,如果购买甲4件、乙10件、丙1件需花4.2元,那么购买甲、乙、丙各1件需花多少钱?( )
A. 1.05
B. 1.4
C. 1.85
D. 2.1
参考答案: A
本题解释:
正确答案是A
考点
不定方程问题
解析
甲×3+乙×7+丙×1=3.15……①
甲×4+乙×10+丙×1=4.20……②
这是不定方程组,无法解得每个未知数的具体值。换言之,未知数的解存在无穷多个,而题目中四个选项均为确定数值,所以未知数的具体值为多少并不影响甲+乙+丙的值,也即只需要求出其中一组解即可。对此,可以设定最复杂的那个为0,即乙=0,代入后解二元一次方程组,解得甲=1.05,丙=0,即可得甲+乙+丙=1.05。故正确答案为A。
秒杀技
①×3-②×2可得:甲+乙+丙=3.15×3-4.20×2=1.05。故正确答案为A。
24、单选题
一列客车长250米,一列货车长350米,在平行的轨道上相向行驶,从两车头相遇到两车尾相离经过15秒,已知客车与货车的速度比是5∶3。问两车的速度相差多少?( )
A. 10米/秒
B. 15米/秒
C. 25米/秒
D. 30米/秒
参考答案: A
本题解释:
【答案解析】根据题意可知,两车的速度和为(250+350)÷15=40米/秒,且两车的速度比是5∶3,则两车的速度差为10米/秒。
25、单选题
现有50名学生都做物理、化学实验,如果物理实验做正确的有40人,化学实验做正确的有31人,两种实验都做错的有4人,则两种实验都做对的有( )。
A. 27人
B. 25人
C. 19人
D. 10
参考答案: B
本题解释:
【答案解析】容斥问题,40+31-X=50-4,所以X=25,选B。
26、单选题
已知2008被一些自然数去除,得到的余数都是10,那么,这些自然数共有( )。
A. 10
B. 11
C. 12
D. 9
参考答案: B
本题解释:
【答案解析】解析:余10=>说明2008-10=1998都能被这些数整除。同时,1998=2×3×3×3×37,所以,取1个数有37,2,3。---3个。,只取2个数乘积有3×37,2×37,3×3,2×3。---4个。,只取3个数乘积有3×3×37,2×3×37,3×3×3,2×3×3。---4个。只取4个数乘积有3×3×3×37,2×3×3×37,2×3×3×3。---3个。只取5个数乘积有2×3×3×3×37---1个。总共3+4+4+3+1=15,但根据余数小于除数的原理,余数为10,因此所有能除2008且余10的数,都应大于10=>2,3,3×3,2×3被排除。综上,总共有3+4+4+3+1-4=11个。
27、单选题
只装有动力桨的船,其单靠人工划船顺流而下的速度是水速的3倍。现该船靠人工划动从A地顺流到达B地,原路返回时只开足动力桨行驶,用时比来时少2/5。问船在静水中开足动力浆行驶的速度是人工划船速度的多少倍?( )
A. 2
B. 3
C. 4
D. 5
参考答案: B
本题解释:
正确答案是B
考点
行程问题
解析
设水速是1,则顺水速度为3,人工划船静水速度=3-1=2,顺水时间:逆水时间=1:(1-2/5)=5:3,则顺水速度:逆水速度=3:5,所以逆水速度为5,动力浆静水速度=5+1=6,比例为6:2=3:1,故正确答案为B。
标签
赋值思想
28、单选题
某玩具店同时卖出一个拼装玩具和一架遥控飞机,拼装玩具66元,遥控飞机120元,拼装玩具赚了10%,而遥控飞机亏本20%,则这个商店卖出这两个玩具赚钱或是亏本多少( )
A. 赚了12元
B. 赚了24元
C. 亏了14元
D. 亏了24元
参考答案: D
本题解释:
D【解析】根据题意,拼装玩具赚了66÷(1+10%)×10%=6元,遥控飞机亏本120÷(1-20%)×20%=30元,故这个商店卖出这两个玩具亏本30-6=24元。
29、单选题
有一食品店某天购进了6箱食品,分别装着饼干和面包,重量分别为8、9、16、20、22、27千克。该店当天只卖出1箱面包,在剩下的5箱中饼干的重量是面包的两倍,则当天食品店购进了( )千克面包。
A. 44
B. 45
C. 50
D. 52
参考答案: D
本题解释:
正确答案是D
考点和差倍比问题解析由剩下的饼干重量是面包的两倍可知,剩下5箱的总重量一定能被3整除;6箱的总重量是8+9+16+20+22+27=102千克,也能被3整除,因此卖掉的一箱面包的重量也能被3整除,只能是9千克或27千克。若卖掉的一箱面包的重量是9千克,则剩下的面包重(102-9)÷3=31千克,剩余的各箱重量无法组合得到31。所以卖出的面包重27千克,剩余面包重(102-27)÷3=25千克。因此共购进了27+25=52千克面包,故正确答案为D。
30、单选题
某机关20人参加百分制的普法考试,及格线为60分,20人的平均成绩为88分,及格率为95%。所有人得分均为整数,且彼此得分不同。问成绩排名第十的人最低考了多少分?( )
A. 88
B. 89
C. 90
D. 91
参考答案: B
本题解释:
正确答案是B
考点
多位数问题
解析
要使第十名成绩尽可能的低,那么其他人应该尽可能的高,那么前九名应该分别为100、99、98、97、96、95、94、93、92分,而最后一名未及格,最多59分,此十人成绩之和为923,还剩837分。现要把这837分分给其余10个人,而在这10个人成绩排名第十的人成绩最高,要使其得分最低,则这10人的成绩应尽可能接近。易知此10人平均分为83.7,据此可构造79、80、81、82、83、84、85、86、88、89,因此成绩排名第十的人最低考了89分。故正确答案为B。
31、单选题
甲、乙两人卖数量相同的萝卜,甲打算卖1元2个,乙打算卖1元3个。如果甲乙两人一起按2元5个的价格卖掉全部的萝卜,总收入会比预想的少4元钱。问两人共有多少个萝卜?( )
A. 420
B. 120
C. 360
D. 240
参考答案: D
本题解释:
正确答案是D
考点
经济利润问题
解析
设原来的萝卜共有a个,则每个人都有a/2个萝卜,根据题意有:(1/2×a/2+1/3×a/2)-2a/5=4,解得a=240,故正确答案为D。
秒杀技
由题意可知甲打算15元30个,乙打算10元30个,即25元60个。合在一起则为24元60个,也即每60个萝卜少卖1元,因此少卖4元应为240个,这里的30的由来是从2、3、5的最小公倍数想到的。
32、单选题
某单位今年新进了3 个工作人员,可以分配到3 个部门,但每个部门至多只能接收2 个人,问:共有几种不同的分配方案?( )
A. 12
B. 16
C. 24
D. 以上都不对
参考答案: C
本题解释:
【答案】C[解析]每部门都有三种选择,再减去3人同一部门的情况,所以3的3次方-3=24,选C。
33、单选题
一个快钟每小时比标准时间快1分钟,一个慢钟每小时比标准时间慢3分钟。如将两个钟同时调到标准时间,结果在24小时内,快钟显示10点整时,慢钟恰好显示9点整。则此时的标准时间是( )。
A. 9点15分
B. 9点30分
C. 9点35分
D. 9点45分
参考答案: D
本题解释:
【答案解析】使用代入法,设经历了X个小时,标准时间为Y,那么10-X=Y,9+3X=Y,将选项代入,即可得出结论。
34、单选题
(101+103+…+199)-(90+92+…+188)=( )。
A. 100
B. 199
C. 550
D. 990
参考答案: C
本题解释:
C[解析]提取公因式法。101-90=11,103-92=11,……,199-188=11,总计有50个这样的算式,所以50×11=550,选择C。
35、单选题
某城市9月平均气温为28.5度,如当月最热日和最冷日的平均气温相差不超过10度,则该月平均气温在30度及以上的日子最多有多少天?( )
A. 24
B. 25
C. 26
D. 27
参考答案: B
本题解释:
正确答案是B
考点
多位数问题
解析
要使30度以上的天数尽可能多,在气温总和一定的情况下,则必然是其他天的温度尽可能低,而由最热日与最冷日的平均气温相差不超过10度,据此构造极端情况,最热天全部为30度,其余天数为最冷天,温度为20度,设平均气温为30度的天数为Y,则可得30Y+20(30-Y)=30×28.5,解得Y=25.5,因此最多有25天。故正确答案为B。
标签
构造调整
36、单选题
两个数的差是2345,两数相除的商是8,求这两个数之和( )。
A. 2353
B. 2896
C. 3015
D. 3456
参考答案: C
本题解释:
C[解析]根据题意,两数相除商是8,则说明被除数是除数的8倍,两数相减结果2345应为除数的7倍,从而求得除数2345÷7=335,被除数为335×8=2680,两数和为2680+335=3015,答案为C。
37、单选题
商场的自动扶梯以匀速由下往上行驶,两个孩子在行驶的扶梯上上下走动,女孩由下往上走,男孩由上往下走,结果女孩走了40级到达楼上,男孩走了80级到达楼下。如果男孩单位时间内走的扶梯级数是女孩的2倍。则当该扶梯静止时,可看到的扶梯梯级有( )。
A. 40级
B. 50级
C. 60级
D. 70级
参考答案: C
本题解释:
正确答案是C
考点行程问题解析解析1:设女孩的速度为x,男孩为2x,扶梯的速度为y,根据题意可知男孩和女孩所用的时间相同,有x+y=2x-y,得x:y=2,即女孩的速度为扶梯的2倍,因此当女孩走了40级时扶梯走了20级,扶梯静止时有60级。因此正确答案为C。
解析2:因为男孩单位时间内走的扶梯级数是女孩的2倍,所以男孩走80级的时间和女孩走40级的时间相等,由此可知他们两个乘电梯的时间相同,则电梯运行距离也相等,也即有如下两式:
对于男孩:电梯长度=80-电梯运行距离;
对于女孩:电梯长度=40+电梯运行距离。
由此可知电梯长度为60,故正确答案为C。
38、单选题
现有200根相同的钢管,把它们堆放成正三角形垛,使剩余的钢管尽可能的少,那么乘余的钢管有( )。
A. 9
B. 10
C. 11
D. 12
参考答案: B
本题解释:
【解析】20层的情况是1-20的和,一共是210,超出了,所以减去最后一层20剩下190,所以剩余的钢管有200-190=10根。
39、单选题
A、B两地相距1350米,甲和乙分别从A、B两地出发,相向而行。已知甲的速度为4千米/小时,乙的速度为5千米/小时,1分钟后两人调头反方向而行,再过3分钟,两人再次调头反方向而行,以此类推,再过5、7、……(连续奇数)分钟调头而行,请问,出发多少分钟后两人才能相遇?()
A. 9
B. 25
C. 49
D. 81
参考答案: D
本题解释:
【答案解析】如果两人不调头走,两人相遇需要1350÷1000÷(4+5)×60=9分钟。如果以初始方向为正方向,则两个人分别走了1、-3、5、-7、……分钟的路程,由于9=1-3+5-7+9-11+13-15+17,则出发后1+3+5+7+9+11+13+15+17=81分钟两人相遇。
40、单选题
某人银行账户今年底余额减去1500元后,正好比去年底余额减少了25%,去年底余额比前年余额的120%少2000元,则此人银行账户今年底余额一定比前年底余额( )。
A. 多1000元
B. 少1000元
C. 多10%
D. 少10%
参考答案: D
本题解释:
正确答案是D
考点
和差倍比问题
解析
设前年底余额为m元,则去年为(1.2m-2000)元,今年为[0.75×(1.2m-2000)+1500]元,化简得今年为0.9m元,即今年底余额比前年底减少10%,故正确答案为D。
标签
逆向考虑
41、单选题
1000克苹果价值2.4元,柚子的价格比苹果贵一倍,如果两个柚子的重量等于5个每个重100克的苹果,3.6元能买多少个柚子?( )
A. 3
B. 4
C. 6
D. 10
参考答案: A
本题解释:
A两个柚子重500克,即1个柚子重250克,由题意可知,1000克柚子的价格为4.8元,所以250克柚子为1.2元,即1个柚子1.2元,所以3.6元可买3个柚子。
42、单选题
相同表面积的四面体,六面体,正十二面体以及正二十面体,其中体积最大的是( )。
A. 四面体
B. 六面体
C. 正十二面体
D. 正二十面体
参考答案: D
本题解释:
正确答案是D
考点
几何问题
解析
根据等量最值原理,同样表面积的空间几何图形,越接近于球,体积越大。而四个选项中,正二十面体最接近于球,所以体积最大。故正确答案为D。
43、单选题
某船第一次顺流航行21千米又逆流航行4千米,第二天在同一河道中顺流航行12千米,逆流航行7千米,结果两次所用的时间相等。假设船本身速度及水流速度保持不变,则顺水船速与逆水船速之比是( )。
A. 2.5:1
B. 3:1
C. 3.5:1
D. 4:1
参考答案: B
本题解释:
正确答案是B
考点行程问题解析解析1:设顺水和逆水船速分别为a、b,根据题意又21/a+4/b=12/a+7/b,解得a/b=3,答案为B。
解析2:两次航行时间相等,除去顺水和逆水航行相同的距离,21-12=9千米,7-4=3千米,说明顺水行驶9千米与逆水行驶3千米所用的时间相等,行驶的路程比为9:3=3:1,因此速度比为3:1,故正确答案为B。
44、单选题
一种打印机,如果按销售价打九折出售,可盈利215元,如果按八折出售,就要亏损125元。则这种打印机的进货价为( )。
A. 3400元
B. 3060元
C. 2845元
D. 2720元
参考答案: C
本题解释:
正确答案是C
考点经济利润问题解析解析1:按售价的九折出售可盈利215元,按八折出售亏损125元,因此售价的1/10为215+125=340元,售价为3400元,进货价3400-340-215=2845元,因此正确答案为C。
解析2:设售价为x元,根据题意又0.9x-215=0.8x+125,解得x=3400,进货价为3400-340-215=2845元。因此正确答案为C。
秒杀 技根据题意。进货价加215元应能被9整除,只有C项符合。
45、单选题
科考队员在冰面上钻孔获取样本,测量不同空心之间的距离,获得的部分数据分别为1米、3米、6米、12米、24米、48米。问科考队员至少钻了多少个孔?( )
A. 4
B. 5
C. 6
D. 7
参考答案: D
本题解释:
正确答案是D
考点
几何问题
解析
所测距离组成一个数列1、3、6、12、24、48,易知该数列中任一项均大于其前面所有项之和,故这6条线段不可能组成封闭回路,即6条线段最少7个端点,至少钻7个孔。故正确答案为D。
46、单选题
甲、乙、丙三个工程队的效率比为6:5:4,现将A、B两项工作量相同的工程交给这三个工程队,甲队负责A工程,乙队负责B工程,丙队参与A工程若干天后转而参与B工程。两项工程同时开工,耗时16天同时结束,问丙队在A工程中参与施工多少天?( )
A. 6
B. 7
C. 8
D. 9
参考答案: A
本题解释:
正确答案是A
考点
工程问题
解析
解析1:根据题目给出的效率比,直接赋值三个工程队的效率分别为6、5、4,并假设丙队参与A工程Y天,则根据题意可得6×16+4Y=5×16+4(16-Y),解得Y=6。故正确答案为A。
解析2:根据题目中的效率比,直接赋值三个工程队的效率分别为6、5、4,将两工程合在一起看整体,则三个工程队一天的工作量为6+5+4=15,则16天的总工作量为15×16=240,于是A工程的工作量为120,其中甲完成了6×16=96,则丙需要参与(120-96)÷4=6天。故正确答案为A。
秒杀技
秒杀1:将效率比看做份数,甲比乙每天多1份,16天则多16份,而丙一天完成4份,因此完成这16份需要4天,也即丙参与A工程比参与B工程少4天,于是参与A工程的天数为(16-4)÷2=6天。故正确答案为A。
秒杀2:由题意甲效率高于乙效率,因此丙必然在甲中参与天数少于16天的一半,也即答案只在A、B中选择,这两个选项中,优先考虑代入A选项验证,符合条件,故正确答案为A。
标签
直接代入赋值思想
47、单选题
由1、2、3组成的没有重复数字的所有三位数之和为多少?( )
A. 1222
B. 1232
C. 1322
D. 1332
参考答案: D
本题解释:
【答案】D。解析:对其中任何一个数字,分别有2次出现在个位,所以所有这些数字的个位数字之和是(1+2+3)×2=12,同理所有这些数字的十位、百位数字之和都是12,所以所有这些数字之和是12+12×10+12×100=1332,选择D。
48、单选题
某地劳动部门租用甲、乙两个教室开展农村实用人才培训。两教室均有5排座位,甲教室每排可坐10人,乙教室每排可坐9人。两教室当月共举办该培训27次,每次培训均座无虚席,当月培训1290人次。问甲教室当月共举办了多少次这项培训?( )
A. 8
B. 10
C. 12
D. 15
参考答案: D
本题解释:
正确答案是D
考点
和差倍比问题
解析
乙教室可坐9人,可知乙培训过的人数含有因子3,而总的培训人数1290也含有因子3,因此甲教室培训过的人数也必然含有3因子。而甲教室可坐50人,因此要使甲教室培训过的人数也含有3因子,则其举办次数必然含有3因子,因此只有C、D符合。将C选项代入,可知此时乙教室举办过15次培训,其总人数的尾数为5,而甲教室培训的总人数尾数总是为0,因此甲、乙教室的培训人数尾数为5,不符合要求。故正确答案为D。
秒杀技
由题意,甲教室每次培训50人,乙教室每次培训45,假设甲乙的次数分别为X、Y,则可得50X+45Y=1290,观察等式可知45Y的尾数必然为0,因此Y必然为偶数,从而X为奇数,仅D符合。故正确答案为D。
49、单选题
某种汉堡包每个成本4.5元,售价10.5元。当天卖不完的汉堡包即不再出售,在过去十天里,餐厅每天都会准备200个汉堡包,其中有六天正好卖完,四天各剩余25个。问这十天该餐厅卖汉堡包共赚了多少元?( )
A. 10850
B. 10950
C. 11050
D. 11350
参考答案: B
本题解释:
正确答案是B
考点
鸡兔同笼问题
解析
先考虑十天全卖出去,然后分析差异,那么共赚了(10.5-4.5)×200×10-10.5×25×4=10950元(没卖出的部分,不仅每个没赚到10.5-4.5=6元,还赔进去成本4.5元),故正确答案为B。
标签
差异分析
50、单选题
某剧院有25排座位,后一排比前一排多2个座位,最后一排有70个座位。这个剧院一共有多少个座位?( )
A. 1104
B. 1150
C. 1170
D. 1280
参考答案: B
本题解释:
B[解析]最后一排有70个坐位,则前面24排每一排少两个,第一排有70-24×2=22,构成一个等差数列,公差为2,首项为22,S25=25×22+(25×24×2)÷2=1150个,选择B。