★ 银行招聘考试 ★ 
 ★ 银行招聘考试题库 ★ 
 ★ 压中真题已成为一种习惯 ★ 
财务管理 常识判断 法律常识 管理学 会计学 货币银行学 计算机 金融学 经济学 市场营销学 逻辑判断 数学运算 数字推理 图形推理 言语理解 资料分析 病句判断 定义判断 片段阅读 选词填空 时事政治

银行招聘考试题库【数学运算】考点强化练习(2017年最新版)(二)

时间:2017-01-10 07:35:13

微信搜索关注"91考试网"公众号,领30元,获取事业编教师公务员等考试资料40G

1、单选题 有20名工人修筑一段公路,计划15天完成。动工3天后抽出5人去其他工地,其余人继续修路。如果每人工作效率不变,那么修完这段公路实际用(  )
A. 19天
B. 18天
C. 17天
D. 16天

参考答案: A
本题解释:
【答案】A。解析:5人12天完成的工作量分配给15人需要5×12÷15=4天完成,所以修完这段公路实际用15+4=19天。



2、单选题 已知一个长方体的长、宽、高分别为10分米、8分米和6分米,先从它上面切下一个最大的正方体,然后再从剩下的部分上切下一个最大的正方体。问切除这两个正方体后,最后剩下部分的体积是多少?(  )
A. 212立方分米
B. 200立方分米
C. 194立方分米
D. 186立方分米

参考答案: B
本题解释:
【答案解析】根据题意可知,第一次切下的正方体的边长为6分米,第二次切下的正方体的边长为4分米,故最后剩下部分的体积是10×8×6-6×6×6-4×4×4=200立方分米。



3、单选题 某商场举行周年让利活动,单件商品满300减180元,满200减100元,满100减40元;若不参加活动则打5.5折。小王买了价值360元,220元,150元的商品各一件,最少需要多少元钱?(  )
A. 360
B. 382.5
C. 401.5
D. 410

参考答案: B
本题解释:
【答案】B。解析:如下表: [img]http://www.zjgwy.org/files/1001/20121130094639_19279.jpg[/img] 因此最少需要180+120+82.5=382.5元。



4、单选题 一果农想将一块平整的正方形土地分割为四块小土地,并将果树均匀整齐地种在土地的所有边界上,且在每块土地的四个角上都种上一棵果树,该果农未经细算就购买了60颗果树,如果仍按上述想法种植,那他至少多买了(  )棵果树。
A. 0
B. 3
C. 6
D. 15

参考答案: B
本题解释:
【答案解析】本题可利用整除特征性求解,分割成4个小正方形后共有9个顶点,12条边,设每条边(不算顶点)种x棵树,则可种12x+9棵,使总棵树小于60的最大x为4,此时可种57棵树,剩余3棵,所以正确答案为B项。



5、单选题 若x,y,z是三个连续的负整数,并且x>y>z,则下列表达式中正奇数的是(  )。
A. yz-x
B. (x-y)(y-z)
C. x-yz
D. x(y+z)

参考答案: B
本题解释:
正确答案是B 考点 计算问题 解析 三个连续的负整数,有两种情形:奇、偶、奇;偶、奇、偶。分情况讨论: (1)当x、y、z依次为奇、偶、奇数时,直接赋值x=-1,y=-2,z=-3,代入选项可排除C、D; (2)当x、y、z依次为偶、奇、偶数时,直接赋值x=-2,y=-3,z=-4,代入选项可排除A、C、D。 故正确答案为B。 标签 赋值思想分类分步



6、单选题 有一工作,甲做2天后乙接着做,做了10天后完成了工作。已知乙单独完成需要30天,那么甲单独完成此工作需要(  )天。
A. 3天
B. 1天
C. 10天
D. 2天

参考答案: A
本题解释:
【答案解析】由题可知,甲做2天,相当于乙做20天,则乙做30天的工作,甲3天即可完成。



7、单选题 已知2008被一些自然数去除,得到的余数都是10,那么,这些自然数共有(  )。
A. 10
B. 11
C. 12
D. 9

参考答案: B
本题解释:
【答案解析】解析:余10=>说明2008-10=1998都能被这些数整除。同时,1998=2×3×3×3×37,所以,取1个数有37,2,3。---3个。,只取2个数乘积有3×37,2×37,3×3,2×3。---4个。,只取3个数乘积有3×3×37,2×3×37,3×3×3,2×3×3。---4个。只取4个数乘积有3×3×3×37,2×3×3×37,2×3×3×3。---3个。只取5个数乘积有2×3×3×3×37---1个。总共3+4+4+3+1=15,但根据余数小于除数的原理,余数为10,因此所有能除2008且余10的数,都应大于10=>2,3,3×3,2×3被排除。综上,总共有3+4+4+3+1-4=11个。



8、单选题 从1、2、3、4、5、6、7、8、9中任意选三个数,使他们的和为偶数,则有多少种选法?(  )
A. 40
B. 41
C. 44
D. 46

参考答案: C
本题解释:
【答案解析】:选C,形成偶数的情况:奇数+奇数+偶数=偶数;偶数+偶数+偶数=偶数=>其中,奇数+奇数+偶数=偶数=>C(2,5)[5个奇数取2个的种类]×C(1,4)[4个偶数取1个的种类]=10×4=40,偶数+偶数+偶数=偶数=>C(3,4)=4[4个偶数中选出一个不要],综上,总共4+40=44



9、单选题 某机关20人参加百分制的普法考试,及格线为60分,20人的平均成绩为88分,及格率为95%。所有人得分均为整数,且彼此得分不同。问成绩排名第十的人最低考了多少分?(  )
A. 88
B. 89
C. 90
D. 91

参考答案: B
本题解释:
正确答案是B 考点 多位数问题 解析 要使第十名成绩尽可能的低,那么其他人应该尽可能的高,那么前九名应该分别为100、99、98、97、96、95、94、93、92分,而最后一名未及格,最多59分,此十人成绩之和为923,还剩837分。现要把这837分分给其余10个人,而在这10个人成绩排名第十的人成绩最高,要使其得分最低,则这10人的成绩应尽可能接近。易知此10人平均分为83.7,据此可构造79、80、81、82、83、84、85、86、88、89,因此成绩排名第十的人最低考了89分。故正确答案为B。



10、单选题 三位专家为10幅作品投票,每位专家分别都投出了5票,并且每幅作品都有专家投票。如果三位专家都投票的作品列为A等,两位专家投票的列为B等,仅有一位专家投票的作品列为C等,则下列说法正确的是(  )。
A. A等和B等共6幅
B. B等和C等共7幅
C. A等最多有5幅
D. A等比C等少5幅

参考答案: D
本题解释:
正确答案是D 考点 不定方程问题 解析 解析1: 分别以等级代表其数量,根据题意可得 A+B+C=10……①;3A+2B+C=15……② ②-①×2可得:C-A=5,因此正确答案为D。 解析2: 代入选项法。根据题意可得 A+B+C=10……①;3A+2B+C=15……② 此时有3个未知量,只有2个方程,典型的不定方程问题。将选项代入,依次验证是否成立即可。以选项A为例,若选项A正确,则有:A+B=6。到此得到第三个方程,便可求解此方程组,得C=4,A=-1,B=7。故排除A。 类似的方法可排除选项B、C。故正确答案为D。 解析3: 根据题意可得 A+B+C=10……①;3A+2B+C=15……② 由②-①消去C,可得2A+B=5。由于A、B、C均为非负整数,由此可知0≤2A≤5,因此A只能取值0、1、2。依次代回,可得A、B、C的可能取值为0、5、5;1、3、6;2、1、7三种情形,只有选项D上述三组数据都符合。故正确答案为D。 解析4: 根据题意可得 A+B+C=10……①;3A+2B+C=15……② 对不定方程而言,往往不能得到唯一的一组解。但从选项容易看出,只要求出其中一组解即可验证不符合的选项,将其排除掉即可。因此令A=0,发现B=5、C=5,符合非负整数要求。此时可迅速排除前两个选项,而选项C显然错误。故正确答案为D。



11、单选题 200除500,商2余100,如果被除数和除数都扩大3倍,则余数是(  )。
A. 100
B. 200
C. 300
D. 100000

参考答案: C
本题解释:
【解析】商不变,余数跟着扩大3倍,所以是300,选C。



12、单选题 超市将99个苹果装进两种包装盒,大包装盒每个装12个苹果,小包装盒每个装5个苹果,共用了十多个盒子刚好装完。问两种包装盒相差多少个?(  )
A. 3
B. 4
C. 7
D. 13

参考答案: D
本题解释:
正确答案是D 考点 不定方程问题 解析 设大盒有x个,小盒有y个,则可得12x+5y=99。因为12x是偶数,99是奇数,所以5y是奇数,y是奇数,则5y的尾数是5,可得12x的尾数是4,则可得x=2或者x=7。当x=2时,y=15,符合题意,此时y-x=13;当x=7时,y=3,x+y=10,不满足共用十多个盒子,排除。故正确答案为D。 标签 数字特性



13、单选题 河道赛道场长120米,水流速度为2米/秒,甲船速度为6米/秒,乙船速度为4米/秒。比赛进行两次往返,甲、乙同时从起点出发,先顺水航行,问多少秒后甲、乙船第二次迎面相遇?(  )
A. 48
B. 50
C. 52
D. 54

参考答案: C
本题解释:
【答案】C。解析:甲船顺水速度为2+6=8米/秒,逆水速度为6-2=4米/秒;乙船顺水速度为2+4=6米/秒,逆水速度为4-2=2米/秒。



14、单选题 乘火车从甲城到乙城,1998年初需要19.5小时,1998年火车第一次提速30%,1999年第二次提速25%,2000年第三次提速20%。经过三次提速后,从甲城到乙城乘火车只需要(  )。
A. 8.19小时
B. 10小时
C. 14.63小时
D. 15小时

参考答案: B
本题解释:
正确答案是B 考点行程问题解析设1998年火车的速度为v,三次提速后所需时间为t,三次提速后速度为(1+30%)×(1+25%)×(1+20%)vt=19.5v,解得t=10。因此正确答案为B。



15、单选题 一个慢钟每小时比标准时间慢5分钟,一个快钟每小时比标准时间快3分钟。如果将两个钟同时调到标准时间,在24个小时内的某个时间,慢钟显示7:50,快钟显示9:10。那么此时的标准时间应该是什么?(  )
A. 8:20
B. 8:30
C. 8:40
D. 8:50

参考答案: C
本题解释:
C.【解析】这是一道快慢钟问题。快钟每小时比慢钟快8分钟,而7:50与9:10之间相差80分钟,则此时距离将两个钟调成标准时间为80÷8=10个小时,10个小时的时间,慢钟共少走了5×10=50分钟,则标准时间应该为8:40。因此,本题的正确答案为C选项。



16、单选题 某汽车厂离生产甲、乙、丙三种车型,其中乙型产量的3倍与丙型产量的6倍之和等于甲型产量的4倍,甲型产量与乙型的2倍之和等于丙型产量的7倍。则甲、乙、丙三型产量之比为(  )。
A. 5:4:3
B. 4:3:2
C. 4:2:1
D. 3:2:1

参考答案: D
本题解释:
正确答案是D 考点 和差倍比问题 解析 设甲的产量为x,乙的产量为y,丙的产量为z。则可得如下: 3y+6z=4x,x+2y=7z,两式相加可得3x+z=5y,直接带入选项,只有D符合,故正确答案为D。 秒杀技 得到3y+6z=4x后,观察该式,可知x应为3的倍数,只有D符合。 标签 直接代入



17、单选题 100个孩子按1、2、3…依次报数,从报奇数的人中选取k个孩子,他们所报数字之和为1949,问k最大值为多少?(  )
A. 43
B. 44
C. 45
D. 46

参考答案: A
本题解释:
【答案】A。解析:奇数个奇数的和为奇数,故k的最大值应是奇数,排除B、D;从1开始,45个连续奇数的和是452>1949,排除C,此题答案为A。



18、单选题 某船第一次顺流航行21千米又逆流航行4千米,第二天在同一河道中顺流航行12千米,逆流航行7千米,结果两次所用的时间相等。假设船本身速度及水流速度保持不变,则顺水船速与逆水船速之比是(  )。
A. 2.5:1
B. 3:1
C. 3.5:1
D. 4:1

参考答案: B
本题解释:
正确答案是B 考点行程问题解析解析1:设顺水和逆水船速分别为a、b,根据题意又21/a+4/b=12/a+7/b,解得a/b=3,答案为B。 解析2:两次航行时间相等,除去顺水和逆水航行相同的距离,21-12=9千米,7-4=3千米,说明顺水行驶9千米与逆水行驶3千米所用的时间相等,行驶的路程比为9:3=3:1,因此速度比为3:1,故正确答案为B。



19、单选题 每条长200米的三个圆形跑道共同相交于A点,张三、李四、王五三个队员从三个跑道的交点A处同时出发,各取一条跑道练习长跑。张三每小时跑5公里,李四每小时跑7公里,王五每小时跑9公里。问三人第四次在A处相遇时,他们跑了多长时间?(  )
A. 40分钟
B. 48分钟
C. 56分钟
D. 64分钟

参考答案: B
本题解释:
【答案解析】分别求出跑1米所用的时间。60/5000=张三,60/7000=李四,60/9000=王五。张三跑完200米要12/5分钟(2.4),李四需要12/7(1.7)分钟,王五需要4/3(1.3)分钟。张与李圈相差0.7分钟,与王相差1.1分钟,李与王差0.6分钟。得出这样的关系后可以算出张跑到第N圈时(N>4)李和王刚好也在A点,他们2.4分钟时的位移分别为:200m、282m、365m,然后求出圈差的位移82M.165M然后用200分别除以82.165,求出李需要2.44次的2.4分钟就可以再跑200米,王需要1.2次的2.4分钟,然后通分求出共需要多少个2.4分钟就行了。



20、单选题 两个数的差是2345,两数相除的商是8,求这两个数之和(  )。
A. 2353
B. 2896
C. 3015
D. 3456

参考答案: C
本题解释:
C[解析]根据题意,两数相除商是8,则说明被除数是除数的8倍,两数相减结果2345应为除数的7倍,从而求得除数2345÷7=335,被除数为335×8=2680,两数和为2680+335=3015,答案为C。



21、单选题 有8种颜色的小球,数量分别为2、3、4、5、6、7、8、9,将它们放进一个袋子里面,问拿到同颜色的球最多需要几次?(  )
A. 6
B. 7
C. 8
D. 9

参考答案: D
本题解释:
【答案解析】解析:"抽屉原理"问题。先从最不利的情况入手,最不利的情况也就使次数最多的情况。即8种小球,每次取一个,且种类不相同(这就是最不利的情况)。然后任取一个,必有重复的,所以是最多取9个。



22、单选题 甲、乙两人卖数量相同的萝卜,甲打算卖1元2个,乙打算卖1元3个。如果甲乙两人一起按2元5个的价格卖掉全部的萝卜,总收入会比预想的少4元钱。问两人共有多少个萝卜?(  )
A. 420
B. 120
C. 360
D. 240

参考答案: D
本题解释:
正确答案是D 考点 经济利润问题 解析 设原来的萝卜共有a个,则每个人都有a/2个萝卜,根据题意有:(1/2×a/2+1/3×a/2)-2a/5=4,解得a=240,故正确答案为D。 秒杀技 由题意可知甲打算15元30个,乙打算10元30个,即25元60个。合在一起则为24元60个,也即每60个萝卜少卖1元,因此少卖4元应为240个,这里的30的由来是从2、3、5的最小公倍数想到的。



23、单选题 某城市居民用水价格为:每户每月不超过5吨的部分按4元/吨收取,超过5吨不超过10吨的部分按6元/吨收取,超过10吨的部分按8元/吨收取。某户居民两个月共交水费108元,则该户居民这两个月用水总量最多为多少吨?(  )
A. 21
B. 24
C. 17.25
D. 21.33

参考答案: A
本题解释:
正确答案是A 考点 分段计算问题 解析 在花费相同的情况下,要使两个月用水量最多,须使水价相对较便宜阶段的用水量最大,即两个月的“不超过5吨”和“5吨到10吨”部分的水量尽量多,通过计算2×(4×5+6×5)=100元,剩余180-100=8元,由于超出10吨的部分按8元/吨收取,故用水量为2×10+1=21吨。故正确答案为A。



24、单选题 现有式样、大小完全相同的四张硬纸片,上面分别写了1、2、3、4四个不同的数字,如果不看数字,连续抽取两次,抽后仍旧放还,则两次都抽到2的概率是(  )。
A. 1/2
B. 1/4
C. 1/8
D. 1/16

参考答案: D
本题解释:
【解析】两次都抽到2的概率是1/4*1/4=1/16,选D。



25、单选题 一个水库在年降水量不变的情况下,能够维持全市12万人20年的用水量,在该市新迁入3万人之后,该水库只够维持15年的用水量,市政府号召节约用水,希望能将水库的使用寿命提高到30年。那么,该市市民平均需要节约多少比例的水才能实现政府制定的目标?(  )
A. 2/5
B. 2/7
C. 1/3
D. 1/4

参考答案: A
本题解释:
正确答案是A 考点 牛吃草问题 解析 假设原有水量为X,单位时间进水量Y,根据题意可得:X=(12-Y)×20,X=(15-Y)×15,解得X=180,Y=3。假设用30年可供N万人次,则可得,180=(N-3)×30,解得N=9。也即15万人的用水量相当于9万人,因此节水比例为2/5,故正确答案为A。



26、单选题 有一只钟,每小时慢3分钟,早晨4点30分的时候,把钟对准了标准时间,则钟走到当天上午10点50分的时候,标准时间是(  )。
A. 11点整
B. 11点5分
C. 11点10分
D. 11点15分

参考答案: C
本题解释:
正确答案是C 考点钟表问题解析慢钟每小时比快钟慢3分钟,说明慢钟与快钟的速度比为57:60,早上4点30分到上午10点50分走过380分钟,设快钟走了x分钟,有380:x=57:60,解得x=400,即快钟走过6小时40分钟,此时的时间为11点10分,故正确答案为C。



27、单选题 一杯糖水,第一次加入一定量的水后,糖水的含糖百分比变为15%;第二次又加入同样多的水,糖水的含糖百分变比为12%;第三次再加入同样多的水,糖水的含糖百分比将变为多少?(  )
A. 8%
B. 9%
C. 10%
D. 11%

参考答案: C
本题解释:
【答案】C。解析:设第一次加水后糖水总量为100,糖为100×15%=15,则第二次加水后糖水变为15÷12%=125,所以每次加入的水为125-100=25,故第三次加水后糖水的含糖百分比为15÷(125+25)=10%。



28、单选题 甲、乙、丙三名运动员囊括了全部比赛项目的前三名,他们的总分分别是8、7和17分,甲得了一个第一名,已知各个比赛项目分数相同,且第一名的得分不低于二、三名得分的和,那么比赛共有多少个项目?(  )
A. 3
B. 4
C. 5
D. 6

参考答案: B
本题解释:
【答案解析】全部比赛前三名的总分为8+7+17=32分,每个项目前三名的分数和至少是3+2+1=6分,所以每个项目前三名的分数和应该是32的大于6的约数,只能是8、16、32;如果是16或32,因为甲得了一个第一,所以甲的得分应大于8,不合题意,所以每个项目前三名的分数和是8分,共有项目32÷8=4个。



29、单选题 同时打开游泳池的A,B两个进水管,加满水需1小时30分钟,且A管比B管多进水180立方米,若单独打开A管,加满水需2小时40分钟,则B管每分钟进水多少立方米?(  )
A. 6
B. 7
C. 8
D. 9

参考答案: B
本题解释:
正确答案是B 考点 工程问题 解析 解析1:设B管每分钟进水x立方米,则A管每分钟进水为x+2立方米,根据题意可得(2x+2)×90=(x+2)×160,解得x=7。故正确答案为B。 解析2:由A、B两管合作加水90分钟,加满水池且A管比B管多进水180立方米,首先可知A管比B管每分钟多进水2立方米,其次可知若A管自己单独灌水90×2=180(分钟),则也可灌满水池,且多灌180立方米(此处原理即用A代替B工作,看差异情况),而题中又告知A管单独工作只需160分钟即可灌满水,因此可知多灌的180立方米用时为180-160=20(分钟),因此A管的效率为每分钟9立方米,于是可知B管每分钟进水7立方米。故正确答案为B。 标签 差异分析



30、单选题 把144张卡片平均分成若干盒,每盒在10张到40张之间,则共有(  )种不同的分法。
A. 4
B. 5
C. 6
D. 7

参考答案: B
本题解释:
正确答案是B 考点倍数约数问题解析直接分解数字144=2×2×2×2×3×3,可以组合的在10到40之间的数字,有12、16、18、24、36,共5种可能。故正确答案为B。



31、单选题 某商店花10000元进了一批商品,按期望获得相当于进价25%的利润来定价,结果只销售了商品总量的30%,为尽快完成资金周转,商店决定打折销售,这样卖完全部商品后,亏本1000元,问商店是按定价打几折销售的?(  )
A. 九折
B. 七五折
C. 六折
D. 四八折

参考答案: C
本题解释:
正确答案是C 考点 经济利润问题 解析 解析1:某商品进该批产品成本为10000元,其中30%是按照相当于进价25%的利润定价,也即3000元的部分是按此利润售出的,此部分回收资金为3000×1.25=3750(元)。根据亏本1000元,可知总共收回资金为9000元,因此剩下的7000元商品实际只售出9000-3750=5250(元),故折扣为5250÷(7000×1.25)=0.6,也即6折。故正确答案为C。 解析2:设一共有10件商品,折扣为Y,则每件商品进价为1000元,利润为250元,可列方程1250×3+1250Y×7=9000,解得Y=0.6,故正确答案为C。 标签 赋值思想



32、单选题 某公司去年有员工830人,今年男员工人数比去年减少6%,女员工人数比去年增加5%,员工总数比去年增加3人,问今年男员工有多少人?(  )
A. 329
B. 350
C. 371
D. 504

参考答案: A
本题解释:
正确答案是A 考点 和差倍比问题 解析 设去年男员工X人,女员工Y人,由题意知:X+Y=830,5%Y-6%X=3,解得X=350。今年男员工减少了,所以人数小于350,只有A符合条件,故正确答案为A。 秒杀技 由题知,今年男员工数是去年的94%,所以今年男员工数可被94%整除,根据选项,只有A符合。故正确答案为A。 标签 数字特性



33、单选题 书架的某一层上有136本书,且是按照“3本小说、4本教材、5本工具书、7本科书、3本小说、4本教材……”的顺序循环从左至右排列的。问该层最右边的一本是什么书?(  )
A. 小说
B. 教材
C. 工具书
D. 科技书

参考答案: A
本题解释:
正确答案是A 考点 周期问题 解析 循环周期为3+4+5+7=19,136÷19=7……3,即7个周期多3本,则最右边的一本书是小说,故正确答案为A。



34、单选题 科考队员在冰面上钻孔获取样本,测量不同空心之间的距离,获得的部分数据分别为1米、3米、6米、12米、24米、48米。问科考队员至少钻了多少个孔?(  )
A. 4
B. 5
C. 6
D. 7

参考答案: D
本题解释:
正确答案是D 考点 几何问题 解析 所测距离组成一个数列1、3、6、12、24、48,易知该数列中任一项均大于其前面所有项之和,故这6条线段不可能组成封闭回路,即6条线段最少7个端点,至少钻7个孔。故正确答案为D。



35、单选题 100人参加7项活动,已知每个人只参加一项活动,而且每项活动参加的人数都不一样,那么,参加人数第四多的活动最多有几个人参加?(  )
A. 22
B. 21
C. 24
D. 23

参考答案: A
本题解释:
正确答案是A 考点 多位数问题 解析 要保证“第四多的活动越多越好”,那么我们要求"其他活动的人越少越好“,其中有三个比其多,另外三个比其少,比”第四多“的少的最少的就是1、2、3,还剩下100-1-2-3=94,剩下四个活动需要尽量的接近,以保证”第四多“能够尽可能多,所以最好是四个连续的自然数,94÷4=23.5,所以这四个数分别为22、23、24、25,故正确答案为A。



36、单选题 某儿童艺术培训中心有5名钢琴教师和6名拉丁舞教师,培训中心将所有的钢琴学员和拉丁舞学员共76人分剐平均地分给各个老师带领,刚好能够分完,且每位老师所带的学生数量都是质数。后来由于学生人数减少,培训中心只保留了4名钢琴教师和3名拉丁舞教师,但每名教师所带的学生数量不变,那么目前培训中心还剩下学员多少人?(  )
A. 36
B. 37
C. 39
D. 41

参考答案: D
本题解释:
正确答案是D 考点 函数最值问题 解析 假定每个钢琴教师带x个学生,每个拉丁舞教师带y个学生,则根据题意有:5x+6y=76。根据此方程,可知x必为偶数,而x与y均为质数,因此x=2,代回可得y=11。于是在学生人数减少后,还剩下学员为4×2+3×11=41个,故正确答案为D。 标签 数字特性



37、单选题 某城市共有A、B、C、D、E五个区,A区人口是全市人口的5/17,B区人口是A区人口的2/5,C区人口是D区和E区人口总数的5/8,A区比C区多3万人,全市共有多少万人?(  )
A. 20.4
B. 30.6
C. 34.5
D. 44.2

参考答案: D
本题解释:
正确答案是D 考点 和差倍比问题 解析 由A区人口是全市人口的5/17,将全市人口看做17份,则A区有5份,B区有2份,于是C、D、E三区共有10份,而在此三区中,C区人口是D区和E区人口总数的5/8,也即C区人口是此三区人口总数的5/13,因此C区人口为(5/13×10)份,于是A区比C区多5-50/13=15/13份,此部分人口数为3万人,于是全市共有3÷15/13×17=44.2(万人)。故正确答案为D。 标签 赋值思想



38、单选题 李华步行以每小时4千米的速度从学校出发到20.4千米外的冬令营报到。0.5小时后,营地老师闻讯前往迎接,每小时比李华多走1.2千米。又过了1.5小时,张明从学校骑车去营地报到。结果3人同时在途中某地相遇。问:张明每小时的速度是多少千米?(  )
A. 25
B. 50
C. 30
D. 20

参考答案: D
本题解释:
D老师速度=4+1.2=5.2千米/时,与李华相遇时间是老师出发后(20.4-4×0.5)÷(4+5.2)=2小时,相遇地点距离学校4×(0.5+2)=10千米,所以张明的速度=10÷(2-1.5)=20千米/时。



39、单选题 1000克苹果价值2.4元,柚子的价格比苹果贵一倍,如果两个柚子的重量等于5个每个重100克的苹果,3.6元能买多少个柚子?(  )
A. 3
B. 4
C. 6
D. 10

参考答案: A
本题解释:
A两个柚子重500克,即1个柚子重250克,由题意可知,1000克柚子的价格为4.8元,所以250克柚子为1.2元,即1个柚子1.2元,所以3.6元可买3个柚子。



40、单选题 已知甲、乙两人共有260本书,其中甲的书有13%是专业书,乙的书有12.5%是专业书,问甲有多少本非专业书?(  )
A. 75
B. 87
C. 174
D. 67

参考答案: B
本题解释:
正确答案是B 考点 和差倍比问题 解析 由“甲的书有13%是专业书”可知,甲的专业书=甲的书×13%,所以甲的书是100的倍数,甲的非专业书是87的倍数,排除A、D。由“乙的书有12.5%是专业书”可知,乙的专业书=乙的书×12.5%=乙的书×1/8,所以乙的书是8的倍数。结合选项,若甲的专业书为174本,则甲有200本书,那么乙的书有60本,不是8的倍数,排除C,故正确答案为B。 标签 数字特性



41、单选题 某原料供应商对购买其原料的顾客实行如下优惠措施:①一次购买金额不超过1万元,不予优惠;②一次购买金额超过1万元,但不超过3万元,给九折优惠;③一次购买金额超过3万元,其中3万元九折优惠,超过3万元部分八折优惠。某厂因库容原因,第一次在该供应商处购买原料付款7800元,第二次购买付款26100元,如果他一次购买同样数量的原料,可以少付:(  )
A. 1460元
B. 1540元
C. 3780元
D. 4360元

参考答案: A
本题解释:
【解析】A。第一次购买原料付款7800元,原料的总价值应为7800元,第二次购买时付款26100元,原料的总价值应为26100÷0.9=29000元。如果要将两次购买变成一次购买,则总价值应为7800+29000=36800元,而应该付款额为30000×0.9+6800×0.8=32440元,一次性购买比分两次购买可以节约7800+26100-32440=1460元。



42、单选题 用3、9、0、1、8、5分别组成一个最大的六位数与最小的六位数,它们的差是(  )。
A. 15125
B. 849420
C. 786780
D. 881721

参考答案: D
本题解释:
D最大的数为985310,最小的数为103589,故它们的差为881721。



43、单选题 某市居民生活用电每月标准用电量的基本价格为每度0.50元,若每月用电量超过标准用电量,超出部分按其基本价格的80%收费,某户九月份用电84度,共交电费39.6元,则该市每月标准用电量为(  )。
A. 60度
B. 65度
C. 70度
D. 75度

参考答案: A
本题解释:
【答案解析】基本价格的80%是0.5×0.8=0.4,设每月标准用电X度,则0.5X+(84-X)×0.4=39.6,解得X=60,选A。



44、单选题 一个快钟每小时比标准时间快1分钟,一个慢钟每小时比标准时间慢3分钟。如将两个钟同时调到标准时间,结果在24小时内,快钟显示10点整时,慢钟恰好显示9点整。则此时的标准时间是(  )。
A. 9点15分
B. 9点30分
C. 9点35分
D. 9点45分

参考答案: D
本题解释:
【答案解析】使用代入法,设经历了X个小时,标准时间为Y,那么10-X=Y,9+3X=Y,将选项代入,即可得出结论。



45、单选题 甲买了3支签字笔、7支圆珠笔和1支铅笔,共花了32元,乙买了4支同样的签字笔、10支圆珠笔和1支铅笔,共花了43元。如果同样的签字笔、圆珠笔、铅笔各买一支,共用多少钱?(  )
A. 21元
B. 11元
C. 10元
D. 17元

参考答案: C
本题解释:
正确答案是C 考点 不定方程问题 解析 设签字笔X元,圆珠笔Y元,铅笔Z元,根据题意可得:3X+7Y+Z=32,4X+10Y+Z=43,为不定方程组。从选项可以看出,无论三支笔的价格为何,三种笔各一支的总价为固定值,因此只需找到上述不定方程的一组特解即可,由此令Y=0,代入解得X=11,Z=﹣1,由此可知X+Y+Z=10。故正确答案为C。



46、单选题 一种溶液,蒸发掉一定量的水后,溶液的浓度为10%;再蒸发掉同样多的水后,溶液的浓度变为12%;第三次蒸发掉同样多的水后,溶液的浓度将变为多少?(  )
A. 14%
B. 17%
C. 16%
D. 15%

参考答案: D
本题解释:
正确答案是D 考点 浓度问题 解析 在蒸发的过程中,溶液的量发生变化,但其中溶质保持不变,因此将溶质作为解题突破口,给溶质赋值。为方便后面的计算,设其溶质为60,则可知其浓度在10%时,溶液量为600,其浓度在12%时,溶液量为500。这说明在变化过程中蒸发掉了水为100。因此第三次蒸发同样多的水后,溶液还剩400,故其浓度为15%。故正确答案为D。 标签 赋值思想



47、单选题 百货商场折价出售一商品,以八折出售的价格比原价少15元,问该商品的原价是多少元?(  )
A. 65
B. 70
C. 75
D. 80

参考答案: C
本题解释:
C设原价为x元,则80%x+25=x,x=75元。



48、单选题 一个五位数,左边三位数是右边两位数的5倍,如果把右边的两位数移到前面,则所得新的五位数要比原来的五位数的2倍还多75,则原来的五位数是(  )。
A. 12525
B. 13527
C. 17535
D. 22545

参考答案: A
本题解释:
【答案解析】直接代入,选A。



49、单选题 某剧院有25排座位,后一排比前一排多2个座位,最后一排有70个座位。这个剧院一共有多少个座位?(  )
A. 1104 
B. 1150 
C. 1170 
D. 1280

参考答案: B
本题解释:
B[解析]最后一排有70个坐位,则前面24排每一排少两个,第一排有70-24×2=22,构成一个等差数列,公差为2,首项为22,S25=25×22+(25×24×2)÷2=1150个,选择B。



50、单选题 甲、乙、丙三个工程队的效率比为6:5:4,现将A、B两项工作量相同的工程交给这三个工程队,甲队负责A工程,乙队负责B工程,丙队参与A工程若干天后转而参与B工程。两项工程同时开工,耗时16天同时结束,问丙队在A工程中参与施工多少天?(  )
A. 6
B. 7
C. 8
D. 9

参考答案: A
本题解释:
正确答案是A 考点 工程问题 解析 解析1:根据题目给出的效率比,直接赋值三个工程队的效率分别为6、5、4,并假设丙队参与A工程Y天,则根据题意可得6×16+4Y=5×16+4(16-Y),解得Y=6。故正确答案为A。 解析2:根据题目中的效率比,直接赋值三个工程队的效率分别为6、5、4,将两工程合在一起看整体,则三个工程队一天的工作量为6+5+4=15,则16天的总工作量为15×16=240,于是A工程的工作量为120,其中甲完成了6×16=96,则丙需要参与(120-96)÷4=6天。故正确答案为A。 秒杀技 秒杀1:将效率比看做份数,甲比乙每天多1份,16天则多16份,而丙一天完成4份,因此完成这16份需要4天,也即丙参与A工程比参与B工程少4天,于是参与A工程的天数为(16-4)÷2=6天。故正确答案为A。 秒杀2:由题意甲效率高于乙效率,因此丙必然在甲中参与天数少于16天的一半,也即答案只在A、B中选择,这两个选项中,优先考虑代入A选项验证,符合条件,故正确答案为A。 标签 直接代入赋值思想




首页 上页 1 2 下页 尾页 2/2/2
微信搜索关注"91考试网"公众号,领30元,获取公务员事业编教师考试资料40G
【省市县地区导航】【考试题库导航】
 ★ 银行招聘考试省级导航 ★ 
全国 A安徽 B北京 C重庆 F福建 G广东 广西 甘肃 贵州 H河南 河北 湖南 湖北 黑龙江 海南 J江苏 江西 吉林 L辽宁 N内蒙古 宁夏 Q青海 S山东 山西 陕西 四川 上海 T天津 X新疆 西藏 Y云南 Z浙江
 ★ 银行招聘考试 ★ 

电脑版  |  手机版  |  返回顶部