|
时间:2017-01-04 07:41:52
1、单选题
某公司计划购买一批灯泡,11W的普通节能灯泡耗电110度/万小时,单价20元;5W的LED灯泡耗电50度/万小时,单价110元。若两种灯泡使用寿命均为5000小时,每度电价格为0.5元。则每万小时LED灯泡的总使用成本是普通节能灯泡的多少倍?( )
A. 1.23
B. 1.80
C. 1.93
D. 2.58
参考答案: D
本题解释:
【答案】D。解析:每万小时普通节能灯泡使用成本为20×2+110×0.5=95元;每万小时LED灯泡使用成本为110×2+50×0.5=245元。所求即为245÷95=2.58。
2、单选题
三位专家为10幅作品投票,每位专家分别都投出了5票,并且每幅作品都有专家投票。如果三位专家都投票的作品列为A等,两位专家投票的列为B等,仅有一位专家投票的作品列为C等,则下列说法正确的是( )。
A. A等和B等共6幅
B. B等和C等共7幅
C. A等最多有5幅
D. A等比C等少5幅
参考答案: D
本题解释:
正确答案是D
考点
不定方程问题
解析
解析1:
分别以等级代表其数量,根据题意可得
A+B+C=10……①;3A+2B+C=15……②
②-①×2可得:C-A=5,因此正确答案为D。
解析2:
代入选项法。根据题意可得
A+B+C=10……①;3A+2B+C=15……②
此时有3个未知量,只有2个方程,典型的不定方程问题。将选项代入,依次验证是否成立即可。以选项A为例,若选项A正确,则有:A+B=6。到此得到第三个方程,便可求解此方程组,得C=4,A=-1,B=7。故排除A。
类似的方法可排除选项B、C。故正确答案为D。
解析3:
根据题意可得
A+B+C=10……①;3A+2B+C=15……②
由②-①消去C,可得2A+B=5。由于A、B、C均为非负整数,由此可知0≤2A≤5,因此A只能取值0、1、2。依次代回,可得A、B、C的可能取值为0、5、5;1、3、6;2、1、7三种情形,只有选项D上述三组数据都符合。故正确答案为D。
解析4:
根据题意可得
A+B+C=10……①;3A+2B+C=15……②
对不定方程而言,往往不能得到唯一的一组解。但从选项容易看出,只要求出其中一组解即可验证不符合的选项,将其排除掉即可。因此令A=0,发现B=5、C=5,符合非负整数要求。此时可迅速排除前两个选项,而选项C显然错误。故正确答案为D。
3、单选题
某区要从10位候选人中投票选举人大代表,现规定每位选举人必须从这10位中任选两位投票,问至少要有多少位选举人参加投票,才能保证有不少于10位选举人投了相同两位候选人的票?( )
A. 382位
B. 406位
C. 451位
D. 516位
参考答案: B
本题解释:
【答案】B。解析:从10位候选人中选2人共有种票,则每种票有9张相同时需要×9=405个
4、单选题
有关部门要连续审核30个科研课题方案,如果要求每天安排审核的课题个数互不相等且不为零,则审核完这些课题最多需要( )。
A. 7天
B. 8天
C. 9天
D. 10天
参考答案: A
本题解释:
【答案解析】1+2+3+4+5+6+7=28,再加一个2等于30,但因为是要互不相等,所以8天的情况和更多的情况都不符合,只能是7天,也就是1+2+3+4+5+6+9的情况,选A。
5、单选题
有300名求职者参加高端人才专场招聘会,其中软件设计类、市场营销类、财务管理类和人力资源管理类分别有100、80、70和50人。问至少有多少人找到工作,才能保证一定有70名找到工作的人专业相同?( )
A. 71
B. 119
C. 258
D. 277
参考答案: C
本题解释:
正确答案是C
考点
抽屉原理问题
解析
考虑对这些人进行分配,在使得每个专业人数不足70的情况下尽可能的增加就业人数,则四类专业可就业的人数分别为69、69、69、50,总和为257人。此时再多1人,则必然有一个专业达到70人,因此所求最少人数为258人,故正确答案为C。
标签
构造调整
6、单选题
2004×(2.3×47+2.4)÷(2.4×47-2.3)的值为( )。
A. 2003
B. 2004
C. 2005
D. 2006
参考答案: B
本题解释:
正确答案是B
考点计算问题解析原式=2004×(2.3×47+2.4)÷[(2.3+0.1)×47-2.3]=2004×(2.3×47+2.4)÷(2.3×47+4.7-2.3)=2004×(2.3×47+2.4)÷(2.3×47+2.4)=2004。因此正确答案为B。
7、单选题
一果农想将一块平整的正方形土地分割为四块小土地,并将果树均匀整齐地种在土地的所有边界上,且在每块土地的四个角上都种上一棵果树,该果农未经细算就购买了60颗果树,如果仍按上述想法种植,那他至少多买了( )棵果树。
A. 0
B. 3
C. 6
D. 15
参考答案: B
本题解释:
【答案解析】本题可利用整除特征性求解,分割成4个小正方形后共有9个顶点,12条边,设每条边(不算顶点)种x棵树,则可种12x+9棵,使总棵树小于60的最大x为4,此时可种57棵树,剩余3棵,所以正确答案为B项。
8、单选题
百货商场折价出售一商品,以八折出售的价格比原价少15元,问该商品的原价是多少元?( )
A. 65
B. 70
C. 75
D. 80
参考答案: C
本题解释:
C设原价为x元,则80%x+25=x,x=75元。
9、单选题
一个车队有三辆汽车,担负着五家工厂的运输任务,这五家工厂分别需要7、9、4、10、6名装卸工,共计36名;如果安排一部分装卸工跟车装卸,则不需要那么多装卸工,而只需要在装卸任务较多的工厂再安排一些装卸工就能完成装卸任务,那么在这种情况下,总共至少需要( )名装卸工才能保证各厂的装卸需求。 10、单选题
某公司去年有员工830人,今年男员工人数比去年减少6%,女员工人数比去年增加5%,员工总数比去年增加3人,问今年男员工有多少人?( ) 11、单选题
某城市共有A、B、C、D、E五个区,A区人口是全市人口的5/17,B区人口是A区人口的2/5,C区人口是D区和E区人口总数的5/8,A区比C区多3万人,全市共有多少万人?( ) 12、单选题
三名小孩儿中有一名学龄前儿童(年龄不足6岁),他们的年龄都是质数,且依次相差6岁,他们的年龄之和为多少岁?( ) 13、单选题
一个水库在年降水量不变的情况下,能够维持全市12万人20年的用水量,在该市新迁入3万人之后,该水库只够维持15年的用水量,市政府号召节约用水,希望能将水库的使用寿命提高到30年。那么,该市市民平均需要节约多少比例的水才能实现政府制定的目标?( ) 14、单选题
现有21朵鲜花分给5人,若每个人分得的鲜花数各不相同,则分得鲜花最多的人至少分得( )朵鲜花。 15、单选题
某人在雅虎上申请了一个邮箱,邮箱密码是由0至9中任意4个数字组成,他任意输入4个数字,输入正确密码的概率是( )。 16、单选题
若x,y,z是三个连续的负整数,并且x>y>z,则下列表达式中正奇数的是( )。 17、单选题
同时打开游泳池的A,B两个进水管,加满水需1小时30分钟,且A管比B管多进水180立方米,若单独打开A管,加满水需2小时40分钟,则B管每分钟进水多少立方米?( ) 18、单选题
把144张卡片平均分成若干盒,每盒在10张到40张之间,则共有( )种不同的分法。 19、单选题
某单位今年新进了3 个工作人员,可以分配到3 个部门,但每个部门至多只能接收2 个人,问:共有几种不同的分配方案?( ) 20、单选题
时钟指示2点15分,它的时针和分针所成的锐角是多少度?( ) 21、单选题
小红把平时节省下来的全部五分硬币先围成一个三角形,正好用完,后来又改围城一个正方形,也正好用完。如果正方形的每条边比三角形的每条边少用5枚硬币,则小红所有五分硬币的总价值是( )。 22、单选题
某市居民生活用电每月标准用电量的基本价格为每度0.50元,若每月用电量超过标准用电量,超出部分按其基本价格的80%收费,某户九月份用电84度,共交电费39.6元,则该市每月标准用电量为( )。 23、单选题
从1、2、3、4、5、6、7、8、9中任意选三个数,使他们的和为偶数,则有多少种选法?( ) 24、单选题
甲、乙、丙、丁四个旅行团分别有游客69人、85人、93人、97人。现在要把这四个旅行团分别进行分组,使每组都是A名游客,以便乘车前往参观游览。已知甲、乙、丙三个旅行团分成每组A人的若干组后,所剩的人数都相同,问丁旅行团分成每组A人的若干组后还剩几人?( ) 25、单选题
某高校对一些学生进行问卷调查。在接受调查的学生中,准备参加注册会计师考试的有63人,准备参加英语六级考试的有89人,准备参加计算机考试的有47人,三种考试都准备参加的有24人,准备选择两种考试都参加的有46人,不参加其中任何一种考试的都15人。问接受调查的学生共有多少人?( ) 26、单选题
某商品按定价的80%(八折)出售,仍能获得20%的利润,问定价时期望的利润率是多少?( ) 27、单选题
从一楼走到五楼,爬完一层休息30秒,一共要210秒,那么从一楼走到7楼,需要多少秒( ) 28、单选题
为节约用水,某市决定用水收费实行超额超收,标准用水量以内每吨2.5元,超过标准的部分加倍收费。某用户某月用水15吨,交水费62.5元,若该用户下个月用水12吨,则应交水费多少钱?( ) 29、单选题
一个五位数,左边三位数是右边两位数的5倍,如果把右边的两位数移到前面,则所得新的五位数要比原来的五位数的2倍还多75,则原来的五位数是( )。 30、单选题
教室里有若干学生,走了10名女生后,男生是女生人数的2倍,又走了9名男生后,女生是男生人数的5倍。问:最初有多少名女生?( ) 31、单选题
小明今年a岁,芳芳明年(a-4)岁,再过c年,他们相差( )。 32、单选题
李华步行以每小时4千米的速度从学校出发到20.4千米外的冬令营报到。0.5小时后,营地老师闻讯前往迎接,每小时比李华多走1.2千米。又过了1.5小时,张明从学校骑车去营地报到。结果3人同时在途中某地相遇。问:张明每小时的速度是多少千米?( ) 33、单选题
有一只钟,每小时慢3分钟,早晨4点30分的时候,把钟对准了标准时间,则钟走到当天上午10点50分的时候,标准时间是( )。 34、单选题
某市现有70万人口,如果5年后城镇人口增加4%,农村人口增加5.4%,则全市人口将增加4.8%,那么这个市现有城镇人口( )。 35、单选题
某单位共有A.B.C.三个部门,三部门人员平均年龄分别为38岁,24岁,42岁,A和B两部门人员平均年龄为30岁,B和C两部门人员平均年龄为34岁,该单位全体人员的平均年龄为多少岁?( ) 36、单选题
已知甲、乙两人共有260本书,其中甲的书有13%是专业书,乙的书有12.5%是专业书,问甲有多少本非专业书?( ) 37、单选题
六位同学数学考试的平均成绩是92.5分,他们的成绩是互不相同的整数,最高分是99分,最低分是76分,则按分数从高到低居第三位的同学至少得多少分( )。 38、单选题
大学的小李和b大学的小孙分别从自己学校同时出发,不断往返于a、b两校之间。现已知小李的速度为85米/分钟,小孙的速度为105米/分钟,且经过12分钟后两人第二次相遇。问a、b两校相距多少米?( ) 39、单选题
某次考试100道选择题,每做对一题得1.5分,不做或做错一题扣1分,小李共得100分,那么他答错多少题( ) 40、单选题
桌面上有两个半径分别为2厘米和40厘米的圆环,让小圆环沿着大圆环外边缘滚动一圈,则小圆环滚动的圈数是:( ) 41、单选题
2010年某种货物的进口价格是15元/公斤,2011年该货物的进口量增加了一半,进口金额增加了20%。问2011年该货物的进口价格是多少元/公斤?( ) 42、单选题
某年级有84名学生,其中男生的年龄之和是女生的3倍。3年后,男生的年龄之和比女生年龄之和的3倍少36岁。问该年级男生有多少人?( ) 43、单选题
甲、乙、丙、丁四人为地震灾区捐款,甲捐款数是另外三人捐款总数的一半,乙捐款数是另外三人捐款总数的1/3,丙捐款数是另外三人捐款总数的1/4,丁捐款169元。问四人一共捐了多少钱?( ) 44、单选题
甲、乙、丙、丁四个人去图书馆借书,甲每隔5天去一次,乙每隔11天去一次,丙每隔17天去一次,丁每隔29天去一次。如果5月18日他们四个人在图书馆相遇,问下一次四个人在图书馆相遇是几月几号?( ) 45、单选题
有20名工人修筑一段公路,计划15天完成。动工3天后抽出5人去其他工地,其余人继续修路。如果每人工作效率不变,那么修完这段公路实际用( ) 46、单选题
某成衣厂对9名缝纫工进行技术评比,9名工人的得分一给好成等差数列,9人的平均得分是86分,前5名工人的得分之和是460分,那么前7名工人的得分之和是多少?( ) 47、单选题
共有100个人参加某公司的招聘考试,考试内容共有5道题,1-5题分别有80人,92人,86人,78人,和74人答对,答对了3道和3道以上的人员能通过考试,请问至少有多少人能通过考试?( ) 48、单选题
某河段中的沉积河沙可供80人连续开采6个月或60人连续开采10个月。如果要保证该河段河沙不被开采枯竭,问最多可供多少人进行连续不间断的开采?(假定该河段河沙沉积的速度相对稳定)( ) 49、单选题
一个长方形,它的周长是32米,长是宽的3倍。这个长方形的面积是多少平方米?( ) 50、单选题
在400米环形跑道上,A、B两点相距100米。甲、乙两人分别从A、B两点同时出发,按逆时针方向跑步。甲每秒跑5米,乙每秒跑4米。每人每跑100米,都要停10秒。那么,甲追上乙需要的时间是( )秒。
A. 26
B. 27
C. 28
D. 29
参考答案: A
本题解释:
正确答案是A
考点统筹规划问题解析设三辆汽车分别为甲、乙、丙车;五个工厂分别为A、B、C、D、E厂,则最初状态甲、乙、丙三车上人数为0,五工厂分别有人7、9、4、10、6人。我们在五个工厂都减少1名装卸工时,五工厂共减少5人,而每辆车上的人数各增加1人,车上共增加3人,所以装卸工的总人数减少2人。当车上增加到4人,C厂剩余的人数为0,此时每辆车上的人数每增加1人,车上共增加3人,而五工厂共减少4人,所以装卸工的总人数仍减少。当车上增加到6人,C、E厂剩余的人数为0,此时每车上的人数每增加1人,车上共增加3人,而五工厂共减少3人,所以装卸工的总人数不变。当车上增加到7人,A、C、E厂剩余的人数为0,此时每辆车上的人数如果再每增加1人,车上共增加3人,而五工厂共减少2人,所以装卸工的总人数增加。所以当车上的人数为6人(或7人)的时候,装卸工的总人数最少。如果每个车上有6个人,A、B、C、D、E厂剩余人数分别为1、3、0、4、0,三辆车上共有18人,总共需装卸工26人。如果每个车上有7个人,A、B、C、D、E厂剩余人数分别为0、2、0、3、0,三辆车上共有21人,总共也需装卸工26人。故正确答案为A。
注释:有M家汽车负担N家工厂的运输任务,当M
A. 329
B. 350
C. 371
D. 504
参考答案: A
本题解释:
正确答案是A
考点
和差倍比问题
解析
设去年男员工X人,女员工Y人,由题意知:X+Y=830,5%Y-6%X=3,解得X=350。今年男员工减少了,所以人数小于350,只有A符合条件,故正确答案为A。
秒杀技
由题知,今年男员工数是去年的94%,所以今年男员工数可被94%整除,根据选项,只有A符合。故正确答案为A。
标签
数字特性
A. 20.4
B. 30.6
C. 34.5
D. 44.2
参考答案: D
本题解释:
正确答案是D
考点
和差倍比问题
解析
由A区人口是全市人口的5/17,将全市人口看做17份,则A区有5份,B区有2份,于是C、D、E三区共有10份,而在此三区中,C区人口是D区和E区人口总数的5/8,也即C区人口是此三区人口总数的5/13,因此C区人口为(5/13×10)份,于是A区比C区多5-50/13=15/13份,此部分人口数为3万人,于是全市共有3÷15/13×17=44.2(万人)。故正确答案为D。
标签
赋值思想
A. 21
B. 27
C. 33
D. 39
参考答案: C
本题解释:
【答案解析】6以下的质数有2、3、5,2+6=8不是质数,3+6=9也不是质数。因此最小的那个年龄为5岁,他们的年龄之和为5+11+17=33岁。
A. 2/5
B. 2/7
C. 1/3
D. 1/4
参考答案: A
本题解释:
正确答案是A
考点
牛吃草问题
解析
假设原有水量为X,单位时间进水量Y,根据题意可得:X=(12-Y)×20,X=(15-Y)×15,解得X=180,Y=3。假设用30年可供N万人次,则可得,180=(N-3)×30,解得N=9。也即15万人的用水量相当于9万人,因此节水比例为2/5,故正确答案为A。
A. 7
B. 8
C. 9
D. 10
参考答案: A
本题解释:
正确答案是A
考点多位数问题解析要使分得最多花的人分到的花尽可能的少,那么其他人分到的花尽可能的多。5人分到的花应尽量接近,以保证分得最多花的人分到的花尽可能少,所以最好是5个连续的自然数,21÷5=4.2,所以5人先分花数为2、3、4、5、6。2+3+4+5+6=20,还剩1朵花未分出。剩下的1朵花只能分给之前分到6朵花的人。则分得最多的人至少分得7朵鲜花,正确答案为A。
A. 10的3次方
B. 10的4次方
C. 10的5次方
D. 10的6次方
参考答案: B
本题解释:
B[解析]正确的密码只有一个,这10个数字的组合共有10的4次方个,所以答案是B。
A. yz-x
B. (x-y)(y-z)
C. x-yz
D. x(y+z)
参考答案: B
本题解释:
正确答案是B
考点
计算问题
解析
三个连续的负整数,有两种情形:奇、偶、奇;偶、奇、偶。分情况讨论:
(1)当x、y、z依次为奇、偶、奇数时,直接赋值x=-1,y=-2,z=-3,代入选项可排除C、D;
(2)当x、y、z依次为偶、奇、偶数时,直接赋值x=-2,y=-3,z=-4,代入选项可排除A、C、D。
故正确答案为B。
标签
赋值思想分类分步
A. 6
B. 7
C. 8
D. 9
参考答案: B
本题解释:
正确答案是B
考点
工程问题
解析
解析1:设B管每分钟进水x立方米,则A管每分钟进水为x+2立方米,根据题意可得(2x+2)×90=(x+2)×160,解得x=7。故正确答案为B。
解析2:由A、B两管合作加水90分钟,加满水池且A管比B管多进水180立方米,首先可知A管比B管每分钟多进水2立方米,其次可知若A管自己单独灌水90×2=180(分钟),则也可灌满水池,且多灌180立方米(此处原理即用A代替B工作,看差异情况),而题中又告知A管单独工作只需160分钟即可灌满水,因此可知多灌的180立方米用时为180-160=20(分钟),因此A管的效率为每分钟9立方米,于是可知B管每分钟进水7立方米。故正确答案为B。
标签
差异分析
A. 4
B. 5
C. 6
D. 7
参考答案: B
本题解释:
正确答案是B
考点倍数约数问题解析直接分解数字144=2×2×2×2×3×3,可以组合的在10到40之间的数字,有12、16、18、24、36,共5种可能。故正确答案为B。
A. 12
B. 16
C. 24
D. 以上都不对
参考答案: C
本题解释:
【答案】C[解析]每部门都有三种选择,再减去3人同一部门的情况,所以3的3次方-3=24,选C。
A. 45度
B. 30度
C. 25度50分
D. 22度30分
参考答案: D
本题解释:
【答案解析】解析:追击问题的变形,2点时,时针分针成60度,即路程差为60度,时针每分钟走1/2度,分针每分钟走6度,时针分针速度差为6-1/2=11/2,15分钟后时针分针的路程差为60-(11/2)×15=-45/2,即此时分针已超过时针22度30分。
A. 1元
B. 2元
C. 3元
D. 4元
参考答案: C
本题解释:
正确答案是C
考点和差倍比问题解析设围成三角形每条边上有x个硬币,每个顶点重复1次,则围成三角形硬币总数为3(x-1)个,同理围成正方形硬币总数为4(x-5-1),3(x-1)=4(x-5-1),解得x=21,因此共有硬币3×(21-1)=60个,总价值3元。故正确答案为C。
秒杀技围成三角形正好用完说明硬币总数一定是3的倍数,因此只有C符合。
A. 60度
B. 65度
C. 70度
D. 75度
参考答案: A
本题解释:
【答案解析】基本价格的80%是0.5×0.8=0.4,设每月标准用电X度,则0.5X+(84-X)×0.4=39.6,解得X=60,选A。
A. 40
B. 41
C. 44
D. 46
参考答案: C
本题解释:
【答案解析】:选C,形成偶数的情况:奇数+奇数+偶数=偶数;偶数+偶数+偶数=偶数=>其中,奇数+奇数+偶数=偶数=>C(2,5)[5个奇数取2个的种类]×C(1,4)[4个偶数取1个的种类]=10×4=40,偶数+偶数+偶数=偶数=>C(3,4)=4[4个偶数中选出一个不要],综上,总共4+40=44
A. 0
B. 1
C. 2
D. 3
参考答案: B
本题解释:
【解析】B。根据题意,知69、85、93对A同余。由85-69=16,93-85=8,93-69=24,可推出A=8或4或2,97÷8=12……1。所以丁团分成每组A人的若干组后还剩1人。
A. 120
B. 144
C. 177
D. 192
参考答案: A
本题解释:
正确答案是A
考点
容斥原理问题
解析
假设只参加一种考试的有X人,则可知:X+46×2+24×3=63+89+47,可知X=35,因此接受调查的学生共有35+46+24+15=120人。故正确答案为A。
注:将只符合一个条件、只符合两个条件和三个条件都符合的分别看作三个整体,以A、B、C表示三个集合,以X、Y、Z分别表示只符合一个条件、只符合两个条件和三个条件都满足的部分,则有A+B+C=X+2Y+3Z及A∪B∪C=X+Y+Z成立。
A. 50%
B. 40%
C. 30%
D. 20%
参考答案: A
本题解释:
【答案解析】设成本为1,根据定价的80%=1.2,所以定价为1.5,1.5-1=0.5,选A。
考查对于利润的理解:单个商品利润=售价-成本,获得百分之几的利润是相对于成本来说的,如我们生产一支笔成本1元,我们将它以1.5元出售,则获得利润为0.5元,因为(0.5/1)*100%=50%,所以获得了50%的利润解法如下:设定价为y,成本为x,则按定价80%出售,仍获得20%利润用数学公式表示就是0.8y-x=0.2x,即售价-成本=利润因此,得y=3x/2,或按原价出售 www.91exAm.org,则利润为,y-x=3x/2-x=x/2即利润率为50%。
A. 318
B. 294
C. 330
D. 360
参考答案: C
本题解释:
C【解析】从一点走到五楼,休息了三次,那么每爬上一次需要的时间为(210-30×3)÷(5-1)=30秒,故从一楼走到七楼需要30×(7-1)+30×(7-2)=330秒。
A. 42.5元
B. 47.5元
C. 50元
D. 55元
参考答案: B
本题解释:
正确答案是B
考点
鸡兔同笼问题
解析
解析1:先将15吨全部看成超出的部分,则按照每吨5元收费,共计收费75元,而实际交水费62.5元,少交12.5元。这是因为标准量以内每吨2.5元,比整体看做超出部分计价少交2.5元,因此标准用水量为5吨。因此12吨应交水费为5×2.5+7×5=47.5元。故正确答案为B。
解析2:设标准用水量上限为A吨,则有2.5A+5×(15-A)=62.5,解得A=5。用水12吨,应交水费2.5×5+5×(12-5)=47.5元。故正确答案为B。
秒杀技
将12吨用水看成标准量以内,应交水费为12×2.5=30元,但四个选项中没有此值,这说明12吨是超过标准用水量。那么15吨必然也是超过标准用水量,要计算12吨应交的水费,只需从15吨所交62.5元中扣除多超出的3吨的价钱即15元即可,也即为47.5元。故正确答案为B。
标签
差异分析
A. 12525
B. 13527
C. 17535
D. 22545
参考答案: A
本题解释:
【答案解析】直接代入,选A。
A. 15
B. 12
C. 10
D. 9
参考答案: A
本题解释:
A【解析】设最初有x名女生,则男生的数量为2(x-10),由题意可列等式x-10=5[2(x-10)-9],可得x=15。故选A。
A. 4岁
B. c+4岁
C. 5岁
D. c-3岁
参考答案: C
本题解释:
【解析】不管过多少年,两人年龄差永远不会改变;今年芳芳是a-5岁,所以相差5岁,选C。
A. 25
B. 50
C. 30
D. 20
参考答案: D
本题解释:
D老师速度=4+1.2=5.2千米/时,与李华相遇时间是老师出发后(20.4-4×0.5)÷(4+5.2)=2小时,相遇地点距离学校4×(0.5+2)=10千米,所以张明的速度=10÷(2-1.5)=20千米/时。
A. 11点整
B. 11点5分
C. 11点10分
D. 11点15分
参考答案: C
本题解释:
正确答案是C
考点钟表问题解析慢钟每小时比快钟慢3分钟,说明慢钟与快钟的速度比为57:60,早上4点30分到上午10点50分走过380分钟,设快钟走了x分钟,有380:x=57:60,解得x=400,即快钟走过6小时40分钟,此时的时间为11点10分,故正确答案为C。
A. 30万
B. 31.2万
C. 40万
D. 41.6万
参考答案: A
本题解释:
【答案解析】可以设现有城镇人口为X万,那么农村人口为70-X,得出等式4%×X+5.4%×(70-X)=70×4.8%,解出结果为30。
A. 34
B. 36
C. 35
D. 37
参考答案: C
本题解释:
正确答案是C
考点
平均数问题
解析
A和B部门各自平均年龄为38、24岁,混合后平均年龄为30岁,假定两部门的人数分别为x、y,可得38x+24y=30(x+y),可得x:y=3:4,类似可知B和C两部门的人数之比为4:5。据此分别对A、B、C三部门的人数赋值为3、4、5,则总的平均年龄为(3×38+4×24+5×42)÷(3+4+5)=35(岁)。故正确答案为C。
标签
赋值思想
A. 75
B. 87
C. 174
D. 67
参考答案: B
本题解释:
正确答案是B
考点
和差倍比问题
解析
由“甲的书有13%是专业书”可知,甲的专业书=甲的书×13%,所以甲的书是100的倍数,甲的非专业书是87的倍数,排除A、D。由“乙的书有12.5%是专业书”可知,乙的专业书=乙的书×12.5%=乙的书×1/8,所以乙的书是8的倍数。结合选项,若甲的专业书为174本,则甲有200本书,那么乙的书有60本,不是8的倍数,排除C,故正确答案为B。
标签
数字特性
A. 93
B. 94
C. 95
D. 96
参考答案: C
本题解释:
C。本题为构造类题目。总分为92.5×6=555,去掉最高分和最低分后还有555-99-76=380。要使第三名分尽可能的低,首先第二名分要尽可能高,即为98分(还余282分)。而第四和第五名的分数要尽量的高,与第三名的分最接近,三者的分为93,94,95。那么最高分至少为95。所以选择C选项。
A. 1140米
B. 980米
C. 840米
D. 760米
参考答案: D
本题解释:
【答案解析】设两校相距s米,则第二次相遇两人的路程和为3s米,有3s=(85+105)×12,解得s=760。
A. 20
B. 25
C. 30
D. 80
参考答案: A
本题解释:
A【解析】不做或做错的题目为(100×1.5-100)÷(1.5+1)=20。
A. 10
B. 20
C. 40
D. 80
参考答案: B
本题解释:
【答案解析】圆的周长之比等于半径之比,所以大圆的周长是小圆的20倍,即小圆需要滚动20圈。
A. 10
B. 12
C. 18
D. 24
参考答案: B
本题解释:
正确答案是B
考点
经济利润问题
解析
假设2010年进口了2公斤,2010年进口金额是30元,2011年进口了3公斤,进口金额是30×(1﹢20%)=36,因此2011年进口价格是36÷3=12元/公斤,故正确答案为B。
标签
赋值思想
A. 48
B. 54
C. 60
D. 66
参考答案: C
本题解释:
【答案解析】若男生人数为女生人数的3倍,则3年后,男生的年龄之和仍然为女生的3倍。3年后男生年龄之和比女生年龄之和的3倍少36岁,说明男生人数比女生人数的3倍少36÷3=12人,故女生人数为(84+12)÷(3+1)=24人,男生为84-24=60人。
A. 780元
B. 890元
C. 1183元
D. 2083元
参考答案: A
本题解释:
【答案解析】最典型的代入型题目…根据题意可以知道总数和可以被3、4、5整除,满足的只有A。
A. 10月18日
B. 10月14日
C. 11月18日
D. 11月14日
参考答案: D
本题解释:
正确答案是D
考点
周期问题
解析
每隔n天去一次即每(n+1)天去一次。下一次四个人相遇所隔天数应该是6、12、18、30的最小公倍数,即为180。而5月18日后的第180天约经过6个月,故为11月,故排除A、B。若下次相遇是11月18日,则经过日期不可能恰好为180天,即11月14日。故正确答案为D。
标签
最小公倍数
A. 19天
B. 18天
C. 17天
D. 16天
参考答案: A
本题解释:
【答案】A。解析:5人12天完成的工作量分配给15人需要5×12÷15=4天完成,所以修完这段公路实际用15+4=19天。
A. 602
B. 623
C. 627
D. 631
参考答案: B
本题解释:
正确答案是B
考点
平均数问题
解析
由于前5名工人的得分之和是460分,则第三名工人的得分=460÷5=92(分),9人的平均得分是86分,即第五名工人的得分为86分,所以第四名的得分为(92+86)÷2=89(分),所以前7名的总分为89×7=623(分),故正确答案为B。
注释:等差数列的平均数等于其中位数的值。
A. 30
B. 55
C. 70
D. 74
参考答案: C
本题解释:
正确答案是C
考点
容斥原理问题
解析
1-5题分别错了20、8、14、22、26人,加起来为90。逆向考虑,为了让更多的人不及格,这90道错题分配的时候应该尽量的3道分给一个人,即可保证一个人不及格,所以一共可以分给最多30个人,让这30个人不及格,所以及格的至少会有70人。故正确答案为C。
标签
三集合容斥原理公式逆向考虑
A. 25
B. 30
C. 35
D. 40
参考答案: B
本题解释:
正确答案是B
考点
牛吃草问题
解析
设河沙初始量为M,每月沉积量为N。则有:
M=(80-N)×6=(60-N)×10,解得N=30,即每个月的沉积量可供30人开采;
可知当开采人数为30时,才能保证连续不间断的开采,故正确答案为B。
A. 64
B. 56
C. 52
D. 48
参考答案: D
本题解释:
D设宽为x则长为3x,则2(x+3x)=32,则x=4,故面积为48平方米。
A. 80
B. 100
C. 120
D. 140
参考答案: D
本题解释:
【答案解析】假设甲、乙都不停地跑,那么甲追上乙的时间是100÷(5-4)=100(秒)。甲、乙每跑100米停10秒,等于甲跑20秒(100÷5)休息10秒,乙跑25秒(100÷4)休息10秒。跑100秒甲要停4次(100÷20-1),共用140秒(100+10×4),此时甲已跑的路程为500米。在第130秒时乙已跑路程为400米(他此时已休息3次,花去30秒),并在该处休息到第140秒,甲刚好在乙准备动身时赶到,他们碰到一块了。所以,甲追上乙需要的时间是140秒。故选D。