★ 银行招聘考试 ★ 
 ★ 银行招聘考试题库 ★ 
 ★ 压中真题已成为一种习惯 ★ 
财务管理 常识判断 法律常识 管理学 会计学 货币银行学 计算机 金融学 经济学 市场营销学 逻辑判断 数学运算 数字推理 图形推理 言语理解 资料分析 病句判断 定义判断 片段阅读 选词填空 时事政治

银行招聘考试【数学运算】考点强化练习(2016年06月28日)(二)

时间:2016-06-28 22:40:35

微信搜索关注"91考试网"公众号,领30元,获取事业编教师公务员等考试资料40G

1、单选题 有20名工人修筑一段公路,计划15天完成。动工3天后抽出5人去其他工地,其余人继续修路。如果每人工作效率不变,那么修完这段公路实际用(  )
A. 19天
B. 18天
C. 17天
D. 16天

参考答案: A
本题解释:
【答案】A。解析:5人12天完成的工作量分配给15人需要5×12÷15=4天完成,所以修完这段公路实际用15+4=19天。



2、单选题 一杯糖水,第一次加入一定量的水后,糖水的含糖百分比变为15%;第二次又加入同样多的水,糖水的含糖百分变比为12%;第三次再加入同样多的水,糖水的含糖百分比将变为多少?(  )
A. 8%
B. 9%
C. 10%
D. 11%

参考答案: C
本题解释:
【答案】C。解析:设第一次加水后糖水总量为100,糖为100×15%=15,则第二次加水后糖水变为15÷12%=125,所以每次加入的水为125-100=25,故第三次加水后糖水的含糖百分比为15÷(125+25)=10%。



3、单选题 现有200根相同的钢管,把它们堆放成正三角形垛,使剩余的钢管尽可能的少,那么乘余的钢管有(  )。
A. 9
B. 10
C. 11
D. 12

参考答案: B
本题解释:
【解析】20层的情况是1-20的和,一共是210,超出了,所以减去最后一层20剩下190,所以剩余的钢管有200-190=10根。



4、单选题 某社团共有46人,其中36人爱好戏剧,30人爱好体育,38人爱好写作,40人爱好收藏,问这个社团至少有(  )人以上四项活动都喜欢。
A. 5
B. 6
C. 7
D. 8

参考答案: B
本题解释:
【答案解析】根据题意可知,不爱好戏剧的有46-36=10人,不爱好体育的有46-30=16人,不爱好写作的有46-38=8人,不爱好收藏的有46-40=6人。要使四项活动都喜欢的人最少,则应使不爱好这四项活动的人最多,即使不爱好这四项活动的人均不重复,所以至少有46-(10+16+8+6)=6人四项活动都喜欢。所以正确答案为B项。



5、单选题 小明和小强参加同一次考试,如果小明答对的题目占题目总数的3/4,小强答对了27道题,他们两人都答对的题目占题目总数的2/3,那么两人都没有答对的题目共有(  )。
A. 3道
B. 4道
C. 5道
D. 6道

参考答案: D
本题解释:
正确答案是D 考点容斥原理问题解析由“小明答对的题目占题目总数的3/4”,可知题目总数是4的倍数;由“他们两人都答对的题目占题目总数2/3”,可知题目总数是3的倍数。因此,题目总数是12的倍数。小强做对了27题,超过题目总数的2/3,则题目总数是36。根据两集合容斥原理公式得两人都没有答对的题目共有36-(36×3/4+27-36×2/3)=6道,故正确答案为D。



6、单选题 共有100个人参加某公司的招聘考试,考试内容共有5道题,1-5题分别有80人,92人,86人,78人,和74人答对,答对了3道和3道以上的人员能通过考试,请问至少有多少人能通过考试?(  )
A. 30
B. 55
C. 70
D. 74

参考答案: C
本题解释:
正确答案是C 考点 容斥原理问题 解析 1-5题分别错了20、8、14、22、26人,加起来为90。逆向考虑,为了让更多的人不及格,这90道错题分配的时候应该尽量的3道分给一个人,即可保证一个人不及格,所以一共可以分给最多30个人,让这30个人不及格,所以及格的至少会有70人。故正确答案为C。 标签 三集合容斥原理公式逆向考虑



7、单选题 有a,b,c,d四条直线,依次在a线上写1,在b线上写2,在c线上写3,在d线上写4,然后在a线上写5,在b线,c线和d线上写数字6,7,8……按这样的周期循环下去问数2005在哪条线上?(  )
A. a线
B. b线
C. C线
D. d线

参考答案: A
本题解释:
【答案解析】等于2005个数,4个一循环,所以2005/4=501余1,所以选A。



8、单选题 当第29届奥运会于北京时间2008年8月8日20时正式开幕时,全世界和北京同一天的国家占(  )。
A. 全部
B. 1/2
C. 1/2以上
D. 1/2以下

参考答案: A
本题解释:
正确答案是A 考点 星期日期问题 解析 解析1: 全球分为东西各12区。按照东加西减的原理,北京东8区晚8点时,东12区应该是8日夜里24点;此时西12区时间是从东12区相应减一天,为7日24点,所以全球正好都处在8日,故正确答案为A。 解析2: 15个经度相差1个小时,北京属于东8区,当北京在20时的时候,有20个区的地区在0时之后(即同一天),也就是有20×15=300度的地区在0—20时,另外有20~24时的地区,刚好是4个区即4×15=60度,300+60=360,即整个地球,故正确答案为A。



9、单选题 一个车队有三辆汽车, 担负着五家工厂的运输任务,这五家工厂分别需要 7、9、4、10、6 名装卸工,共计 36 名;如果安排一部分装卸工跟车装卸,则不需要那么多装卸工,而只需要在装卸任务较多的工厂再安排一些装卸工就能完成装卸任务。那么在这种情况下,总共至少需要(  )名装卸工才能保证各厂的装卸需求?(  )
A. 26   
B. 27   
C. 28   
D. 29

参考答案: A
本题解释:
【答案】A[解析]要求最少,那么三辆车分别装五家工厂里面最大的三个需求量,则可以满足条件,分别装10、9、7, 所以是10+9+7=26,选A。



10、单选题 某次考试100道选择题,每做对一题得1.5分,不做或做错一题扣1分,小李共得100分,那么他答错多少题(  )
A. 20
B. 25
C. 30
D. 80

参考答案: A
本题解释:
A【解析】不做或做错的题目为(100×1.5-100)÷(1.5+1)=20。



11、单选题 某年级有84名学生,其中男生的年龄之和是女生的3倍。3年后,男生的年龄之和比女生年龄之和的3倍少36岁。问该年级男生有多少人?(  )
A. 48
B. 54
C. 60
D. 66

参考答案: C
本题解释:
【答案解析】若男生人数为女生人数的3倍,则3年后,男生的年龄之和仍然为女生的3倍。3年后男生年龄之和比女生年龄之和的3倍少36岁,说明男生人数比女生人数的3倍少36÷3=12人,故女生人数为(84+12)÷(3+1)=24人,男生为84-24=60人。



12、单选题 某村有甲乙两个生产小组,总共50人,其中青年人共13人。甲组中青年人与老年人的比例是2∶3,乙组中青年人与老年人的比例是1∶5,甲组中青年人的人数是:(  )
A. 5人
B. 6人
C. 8人
D. 12人

参考答案: C
本题解释:
【答案】C。解析:设甲组人数为5x,乙组人数为6y。有,解得x=4。因此甲组青年人的人数为8。



13、单选题 甲、乙两时钟都不正确,甲钟每走24小时,恰好快1分钟;乙钟每走24小时,恰好慢1分钟。假定今天下午三点钟的时候,将甲、乙两钟都调好,指在准确的时间上,任其不停地走下去,问下一次这两只钟都同样指在三点时,要隔多少天?(  )
A. 30
B. 240
C. 480
D. 720

参考答案: D
本题解释:
【答案解析】可以先求出甲钟比标准时钟多转一圈所需天数,标准时钟比乙钟多走一圈所需天数,然后再求二者的最小公倍数。甲钟与标准时钟下一次同时指向三点时,甲钟比标准时钟多转一圈,也就是多走12小时,即60×12分钟,需要60×12÷(61-60)=720÷1=720(天)同样,标准时钟与乙钟下一次同时指向三点时,标准时钟比乙钟多转一圈,需要60×12÷(60-59)=720÷1=720(天)所以,经过720天后,甲、乙两钟同时指在三点。故正确答案为D。



14、单选题 一个班的学生排队,如果排成3人一排的队列,则比2人一排的队列少8排;如果排成4人一排的队列,则比3人一排的队列少5排,这个班的学生如果按5人一排来排队的话,队列有多少排?(  )
A. 9
B. 10
C. 11
D. 12

参考答案: C
本题解释:
正确答案是C 考点 不定方程问题 解析 注意到几人一排时,未必恰好整除,而在不整除的时候剩余人数仍构成一排,据此可知本题若列方程将不能得到一个确切方程,故解题方法为代入法。 将A代入,则学生人数在41到45之间,择其最大者进行验证。45人满足排成3人一排的队列比排成2人一排的队列少8排,但排成4人一排的队列比3人一排的队列少3排,故45人不正确。并且此时排成4人一排的队列比3人一排的队列所少的排数低于题中给出的5,而要想排数差值增大,则需学生人数更多,因此41到45之间的数字肯定都不符合要求,故A不正确。(这也是为什么要择所得数字中最大者验证。) 将B代入,则学生人数在46到50之间,择其最大者进行验证。学生人数为50人时,排成4人一排的队列比3人一排的队列少4排,故不符合,且类似上面分析可知B选项不正确。 将C选项代入,则学生人数在51到55之间,择其最大者进行验证。学生人数为55人时,排成4人一排的队列比3人一排的队列少5排,符合要求,而其排成3人一排的队列比2人一排的队列少9排,因此学生人数应少于55人。依次验证其余可知学生人数为52人满足要求。故正确答案为C。



15、单选题 一杯糖水,第一次加入一定量的水后,糖水的含糖百分比变为15%;第二次又加入同样多的水,糖水的含糖百分变比为12%;第三次再加入同样多的水,糖水的含糖百分比将变为多少?(  )
A. 8%
B. 9%
C. 10%
D. 11%

参考答案: C
本题解释:
【答案】C。解析:设第一次加水后糖水总量为100,糖为100×15%=15,则第二次加水后糖水变为15÷12%=125,所以每次加入的水为125-100=25,故第三次加水后糖水的含糖百分比为15÷(125+25)=10%。



16、单选题 时钟指示2点15分,它的时针和分针所成的锐角是多少度?(  )
A. 45度
B. 30度
C. 25度50分
D. 22度30分

参考答案: D
本题解释:
【答案解析】解析:追击问题的变形,2点时,时针分针成60度,即路程差为60度,时针每分钟走1/2度,分针每分钟走6度,时针分针速度差为6-1/2=11/2,15分钟后时针分针的路程差为60-(11/2)×15=-45/2,即此时分针已超过时针22度30分。



17、单选题 甲乙二人协商共同投资,甲从乙处取了15000元,并以两人名义进行了25000元的投资,但由于决策失误,只收回10000元。甲由于过失在己,愿意主动承担2/3的损失。问收回的投资中,乙将分得多少钱?(  )
A. 10000元
B. 9000元
C. 6000元
D. 5000元

参考答案: A
本题解释:
正确答案是A 考点 经济利润问题 解析 共损失了25000-10000=15000元,甲承担15000×2/3=10000元,乙承担剩余的5000元损失,因此乙应该收回:他的投资-他承担的损失=15000-5000=10000元,故正确答案为A。



18、单选题 甲、乙、丙、丁四个旅行团分别有游客69人、85人、93人、97人。现在要把这四个旅行团分别进行分组,使每组都是A名游客,以便乘车前往参观游览。已知甲、乙、丙三个旅行团分成每组A人的若干组后,所剩的人数都相同,问丁旅行团分成每组A人的若干组后还剩几人?(  )
A. 0
B. 1
C. 2
D. 3

参考答案: B
本题解释:
【解析】B。根据题意,知69、85、93对A同余。由85-69=16,93-85=8,93-69=24,可推出A=8或4或2,97÷8=12……1。所以丁团分成每组A人的若干组后还剩1人。



19、单选题 大学的小李和b大学的小孙分别从自己学校同时出发,不断往返于a、b两校之间。现已知小李的速度为85米/分钟,小孙的速度为105米/分钟,且经过12分钟后两人第二次相遇。问a、b两校相距多少米?(  )
A. 1140米
B. 980米
C. 840米
D. 760米

参考答案: D
本题解释:
【答案解析】设两校相距s米,则第二次相遇两人的路程和为3s米,有3s=(85+105)×12,解得s=760。



20、单选题 某公司去年有员工830人,今年男员工人数比去年减少6%,女员工人数比去年增加5%,员工总数比去年增加3人,问今年男员工有多少人?(  )
A. 329
B. 350
C. 371
D. 504

参考答案: A
本题解释:
正确答案是A 考点 和差倍比问题 解析 设去年男员工X人,女员工Y人,由题意知:X+Y=830,5%Y-6%X=3,解得X=350。今年男员工减少了,所以人数小于350,只有A符合条件,故正确答案为A。 秒杀技 由题知,今年男员工数是去年的94%,所以今年男员工数可被94%整除,根据选项,只有A符合。故正确答案为A。 标签 数字特性



21、单选题 某单位共有A.B.C.三个部门,三部门人员平均年龄分别为38岁,24岁,42岁,A和B两部门人员平均年龄为30岁,B和C两部门人员平均年龄为34岁,该单位全体人员的平均年龄为多少岁?(  )
A. 34
B. 36
C. 35
D. 37

参考答案: C
本题解释:
正确答案是C 考点 平均数问题 解析 A和B部门各自平均年龄为38、24岁,混合后平均年龄为30岁,假定两部门的人数分别为x、y,可得38x+24y=30(x+y),可得x:y=3:4,类似可知B和C两部门的人数之比为4:5。据此分别对A、B、C三部门的人数赋值为3、4、5,则总的平均年龄为(3×38+4×24+5×42)÷(3+4+5)=35(岁)。故正确答案为C。 标签 赋值思想



22、单选题 书架的某一层上有136本书,且是按照“3本小说、4本教材、5本工具书、7本科书、3本小说、4本教材……”的顺序循环从左至右排列的。问该层最右边的一本是什么书?(  )
A. 小说
B. 教材
C. 工具书
D. 科技书

参考答案: A
本题解释:
正确答案是A 考点 周期问题 解析 循环周期为3+4+5+7=19,136÷19=7……3,即7个周期多3本,则最右边的一本书是小说,故正确答案为A。



23、单选题 对某单位的100名员工进行调查,结果发现他们喜欢看球赛和电影、戏剧。其中58人喜欢看球赛,38人喜欢看戏剧,52人喜欢看电影,既喜欢看球赛又喜欢看戏剧的有18人,既喜欢看电影又喜欢看戏剧的有16人,三种都喜欢看的有12人,则只喜欢看电影的有(  )。
A. 22人
B. 28人
C. 30人
D. 36人

参考答案: A
本题解释:
【答案解析】本题可以使用阴影覆盖法,即100-(40+18+20)=22(人),故远A项。



24、单选题 某机关20人参加百分制的普法考试,及格线为60分,20人的平均成绩为88分,及格率为95%。所有人得分均为整数,且彼此得分不同。问成绩排名第十的人最低考了多少分?(  )
A. 88
B. 89
C. 90
D. 91

参考答案: B
本题解释:
正确答案是B 考点 多位数问题 解析 要使第十名成绩尽可能的低,那么其他人应该尽可能的高,那么前九名应该分别为100、99、98、97、96、95、94、93、92分,而最后一名未及格,最多59分,此十人成绩之和为923,还剩837分。现要把这837分分给其余10个人,而在这10个人成绩排名第十的人成绩最高,要使其得分最低,则这10人的成绩应尽可能接近。易知此10人平均分为83.7,据此可构造79、80、81、82、83、84、85、86、88、89,因此成绩排名第十的人最低考了89分。故正确答案为B。



25、单选题 由1、2、3组成的没有重复数字的所有三位数之和为多少?(  )
A. 1222
B. 1232
C. 1322
D. 1332

参考答案: D
本题解释:
【答案】D。解析:对其中任何一个数字,分别有2次出现在个位,所以所有这些数字的个位数字之和是(1+2+3)×2=12,同理所有这些数字的十位、百位数字之和都是12,所以所有这些数字之和是12+12×10+12×100=1332,选择D。 



26、单选题 一个车队有三辆汽车,担负着五家工厂的运输任务,这五家工厂分别需要7、9、4、10、6名装卸工,共计36名;如果安排一部分装卸工跟车装卸,则不需要那么多装卸工,而只需要在装卸任务较多的工厂再安排一些装卸工就能完成装卸任务,那么在这种情况下,总共至少需要(  )名装卸工才能保证各厂的装卸需求。
A. 26
B. 27
C. 28
D. 29

参考答案: A
本题解释:
正确答案是A 考点统筹规划问题解析设三辆汽车分别为甲、乙、丙车;五个工厂分别为A、B、C、D、E厂,则最初状态甲、乙、丙三车上人数为0,五工厂分别有人7、9、4、10、6人。我们在五个工厂都减少1名装卸工时,五工厂共减少5人,而每辆车上的人数各增加1人,车上共增加3人,所以装卸工的总人数减少2人。当车上增加到4人,C厂剩余的人数为0,此时每辆车上的人数每增加1人,车上共增加3人,而五工厂共减少4人,所以装卸工的总人数仍减少。当车上增加到6人,C、E厂剩余的人数为0,此时每车上的人数每增加1人,车上共增加3人,而五工厂共减少3人,所以装卸工的总人数不变。当车上增加到7人,A、C、E厂剩余的人数为0,此时每辆车上的人数如果再每增加1人,车上共增加3人,而五工厂共减少2人,所以装卸工的总人数增加。所以当车上的人数为6人(或7人)的时候,装卸工的总人数最少。如果每个车上有6个人,A、B、C、D、E厂剩余人数分别为1、3、0、4、0,三辆车上共有18人,总共需装卸工26人。如果每个车上有7个人,A、B、C、D、E厂剩余人数分别为0、2、0、3、0,三辆车上共有21人,总共也需装卸工26人。故正确答案为A。 注释:有M家汽车负担N家工厂的运输任务,当M

27、单选题 200除500,商2余100,如果被除数和除数都扩大3倍,则余数是(  )。
A. 100
B. 200
C. 300
D. 100000

参考答案: C
本题解释:
【解析】商不变,余数跟着扩大3倍,所以是300,选C。



28、单选题 张先生向商店订购某种商品80件,每件定价100元。张先生向商店经理说:“如果你肯减价,每件减1元,我就多订购四件。”商店经理算了一下,如果减价5%,由于张先生多订购,仍可得与原来一样多的利润。则这种商品每件的成本是(  )。
A. 75元
B. 80元
C. 85元
D. 90元

参考答案: A
本题解释:
正确答案是A 考点经济利润问题解析设该商品每件成本x元,则未减价前每件利润为(100-x)元,减价5%后每件利润为(95-x)元,订购数量为(80+5×4)件,根据题意有80×(100-x)=(95-x)×(80+5×4),解得x=75,故正确答案为A。



29、单选题 某人在公共汽车上发现一个小偷向相反方向步行,10秒钟后他下车去追小偷,如果他的速度比小偷快一倍,比汽车慢4/5,则此人追上小偷需要(  )。
A. 20秒
B. 50秒
C. 95秒
D. 110秒

参考答案: D
本题解释:
正确答案是D 考点行程问题解析根据题中三者速度的比例关系,设此人、小偷和汽车的速度分别为2、1、10,10秒钟后此人下车时,与小偷的距离为10×(10+1)=110,与小偷的速度差为1,因此所需时间为110秒,故正确答案为D。



30、单选题 有关部门要连续审核30个科研课题方案,如果要求每天安排审核的课题个数互不相等且不为零,则审核完这些课题最多需要(  )。
A. 7天
B. 8天
C. 9天
D. 10天

参考答案: A
本题解释:
【答案解析】1+2+3+4+5+6+7=28,再加一个2等于30,但因为是要互不相等,所以8天的情况和更多的情况都不符合,只能是7天,也就是1+2+3+4+5+6+9的情况,选A。



31、单选题 一果农想将一块平整的正方形土地分割为四块小土地,并将果树均匀整齐地种在土地的所有边界上,且在每块土地的四个角上都种上一棵果树,该果农未经细算就购买了60颗果树,如果仍按上述想法种植,那他至少多买了(  )棵果树。
A. 0
B. 3
C. 6
D. 15

参考答案: B
本题解释:
【答案解析】本题可利用整除特征性求解,分割成4个小正方形后共有9个顶点,12条边,设每条边(不算顶点)种x棵树,则可种12x+9棵,使总棵树小于60的最大x为4,此时可种57棵树,剩余3棵,所以正确答案为B项。



32、单选题 小王忘记了朋友手机号码的最后两位数字,只记得倒数第一是奇数,则他最多要拨号多少次才能保证拨对朋友的手机号码?(  )
A. 90
B. 50
C. 45
D. 20

参考答案: B
本题解释:
正确答案是B 考点 排列组合问题 解析 先考虑最后一位,有5种可能;再考虑倒数第二位,有10种可能,因此总的组合方法有5×10=50(种),故正确答案为B。 秒杀技 最后两位数可能情形共有100个,其中奇数的占一半,即50个,故正确答案为B。



33、单选题 每条长200米的三个圆形跑道共同相交于A点,张三、李四、王五三个队员从三个跑道的交点A处同时出发,各取一条跑道练习长跑。张三每小时跑5公里,李四每小时跑7公里,王五每小时跑9公里。问三人第四次在A处相遇时,他们跑了多长时间?(  )
A. 40分钟
B. 48分钟
C. 56分钟
D. 64分钟

参考答案: B
本题解释:
【答案解析】分别求出跑1米所用的时间。60/5000=张三,60/7000=李四,60/9000=王五。张三跑完200米要12/5分钟(2.4),李四需要12/7(1.7)分钟,王五需要4/3(1.3)分钟。张与李圈相差0.7分钟,与王相差1.1分钟,李与王差0.6分钟。得出这样的关系后可以算出张跑到第N圈时(N>4)李和王刚好也在A点,他们2.4分钟时的位移分别为:200m、282m、365m,然后求出圈差的位移82M.165M然后用200分别除以82.165,求出李需要2.44次的2.4分钟就可以再跑200米,王需要1.2次的2.4分钟,然后通分求出共需要多少个2.4分钟就行了。



34、单选题 有一只钟,每小时慢3分钟,早晨4点30分的时候,把钟对准了标准时间,则钟走到当天上午10点50分的时候,标准时间是(  )。
A. 11点整
B. 11点5分
C. 11点10分
D. 11点15分

参考答案: C
本题解释:
正确答案是C 考点钟表问题解析慢钟每小时比快钟慢3分钟,说明慢钟与快钟的速度比为57:60,早上4点30分到上午10点50分走过380分钟,设快钟走了x分钟,有380:x=57:60,解得x=400,即快钟走过6小时40分钟,此时的时间为11点10分,故正确答案为C。



35、单选题 1000克苹果价值2.4元,柚子的价格比苹果贵一倍,如果两个柚子的重量等于5个每个重100克的苹果,3.6元能买多少个柚子?(  )
A. 3
B. 4
C. 6
D. 10

参考答案: A
本题解释:
A两个柚子重500克,即1个柚子重250克,由题意可知,1000克柚子的价格为4.8元,所以250克柚子为1.2元,即1个柚子1.2元,所以3.6元可买3个柚子。



36、单选题 某公司计划购买一批灯泡,11W的普通节能灯泡耗电110度/万小时,单价20元;5W的LED灯泡耗电50度/万小时,单价110元。若两种灯泡使用寿命均为5000小时,每度电价格为0.5元。则每万小时LED灯泡的总使用成本是普通节能灯泡的多少倍?(  )
A. 1.23
B. 1.80
C. 1.93
D. 2.58

参考答案: D
本题解释:
【答案】D。解析:每万小时普通节能灯泡使用成本为20×2+110×0.5=95元;每万小时LED灯泡使用成本为110×2+50×0.5=245元。所求即为245÷95=2.58。



37、单选题 2010年某种货物的进口价格是15元/公斤,2011年该货物的进口量增加了一半,进口金额增加了20%。问2011年该货物的进口价格是多少元/公斤?(  )
A. 10
B. 12
C. 18
D. 24

参考答案: B
本题解释:
正确答案是B 考点 经济利润问题 解析 假设2010年进口了2公斤,2010年进口金额是30元,2011年进口了3公斤,进口金额是30×(1﹢20%)=36,因此2011年进口价格是36÷3=12元/公斤,故正确答案为B。 标签 赋值思想



38、单选题 松鼠妈妈采松果,晴天每天可采20个,雨天每天只能采12个。它一连几天共采了112个松果,平均每天采14个。这几天中有几天下雨?(  )
A. 3
B. 4
C. 5
D. 6

参考答案: D
本题解释:
【答案解析】松鼠妈妈一连采了松果的天数为:112÷14=8(天)。设雨天有x天,则晴天有(8-x)天,列方程得20×(8-x)+12x=1125×(8-x)+3x=28x=6故本题正确答案为D。



39、单选题 173×173×173-162×162×162=(  )
A. 926183
B. 936185
C. 926187
D. 926189

参考答案: D
本题解释:
正确答案是D 考点计算问题解析根据尾数法,173×173×173尾数为7,162×162×162尾数为8,因此173×173×173-162×162×162尾数为9,故正确答案为D。



40、单选题 某鞋业公司的旅游鞋加工车间要完成一出口订单,如果每天加工50 双,要比原计划晚3 天完成,如果每天加工60 双,则要比原计划提前2 天完成,这一订单共需要加工多少双旅游鞋?(  )
A. 1200 双   
B. 1300 双   
C. 1400 双    
D. 1500 双

参考答案: D
本题解释:
【答案】D[解析]能被50、60整除的,排除B和C,再依次代入A和D,A不符合,所以选D。



41、单选题 有300名求职者参加高端人才专场招聘会,其中软件设计类、市场营销类、财务管理类和人力资源管理类分别有100、80、70和50人。问至少有多少人找到工作,才能保证一定有70名找到工作的人专业相同?(  )
A. 71
B. 119
C. 258
D. 277

参考答案: C
本题解释:
正确答案是C 考点 抽屉原理问题 解析 考虑对这些人进行分配,在使得每个专业人数不足70的情况下尽可能的增加就业人数,则四类专业可就业的人数分别为69、69、69、50,总和为257人。此时再多1人,则必然有一个专业达到70人,因此所求最少人数为258人,故正确答案为C。 标签 构造调整



42、单选题 甲、乙、丙、丁四个人去图书馆借书,甲每隔5天去一次,乙每隔11天去一次,丙每隔17天去一次,丁每隔29天去一次。如果5月18日他们四个人在图书馆相遇,问下一次四个人在图书馆相遇是几月几号?(  )
A. 10月18日
B. 10月14日
C. 11月18日
D. 11月14日

参考答案: D
本题解释:
正确答案是D 考点 周期问题 解析 每隔n天去一次即每(n+1)天去一次。下一次四个人相遇所隔天数应该是6、12、18、30的最小公倍数,即为180。而5月18日后的第180天约经过6个月,故为11月,故排除A、B。若下次相遇是11月18日,则经过日期不可能恰好为180天,即11月14日。故正确答案为D。 标签 最小公倍数



43、单选题 一位长寿老人生于19世纪90年代,有一年他发现自己的年龄的平方刚好等于当年的年份。问这位老人出生于哪一年?(  )
A. 1894年
B. 1892年
C. 1898年
D. 1896年

参考答案: B
本题解释:
正确答案是B 考点 年龄问题 解析 由于年龄的平方等于当年的年份,而年份介于1890到2010之间,所以该老人应该是40多岁,而已知:43的平方为1849,44的平方为1936,45的平方为2025。因此,该老人在1936年应为44岁,1936-44=1892。故正确答案为B。



44、单选题 某玩具店同时卖出一个拼装玩具和一架遥控飞机,拼装玩具66元,遥控飞机120元,拼装玩具赚了10%,而遥控飞机亏本20%,则这个商店卖出这两个玩具赚钱或是亏本多少(  )
A. 赚了12元
B. 赚了24元
C. 亏了14元
D. 亏了24元

参考答案: D
本题解释:
D【解析】根据题意,拼装玩具赚了66÷(1+10%)×10%=6元,遥控飞机亏本120÷(1-20%)×20%=30元,故这个商店卖出这两个玩具亏本30-6=24元。



45、单选题 两个相同的瓶子装满酒精溶液,一个瓶子中酒精与水的体积比是3:1,另一个瓶子中酒精与水的体积比是4:1,若把两瓶酒精溶液混合,则混合后的酒精和水的体积之比是多少?(  )
A. 31:9
B. 7:2
C. 31:40
D. 20:11

参考答案: A
本题解释:
【答案解析】(3/4+4/5)/(1/4+1/5)=31:9



46、单选题 某城市9月平均气温为28.5度,如当月最热日和最冷日的平均气温相差不超过10度,则该月平均气温在30度及以上的日子最多有多少天?(  )
A. 24
B. 25
C. 26
D. 27

参考答案: B
本题解释:
正确答案是B 考点 多位数问题 解析 要使30度以上的天数尽可能多,在气温总和一定的情况下,则必然是其他天的温度尽可能低,而由最热日与最冷日的平均气温相差不超过10度,据此构造极端情况,最热天全部为30度,其余天数为最冷天,温度为20度,设平均气温为30度的天数为Y,则可得30Y+20(30-Y)=30×28.5,解得Y=25.5,因此最多有25天。故正确答案为B。 标签 构造调整



47、单选题 32名学生需要到河对岸去野营,只有一条船,每次最多载4人(其中需1人划船),往返一次需要5分钟,如果9时整开始渡河,9时17分时,至少有(  )人还在等待渡河。
A. 16
B. 17
C. 19
D. 22

参考答案: C
本题解释:
正确答案是C 考点计数模型问题解析因为船只能载4人,则每次只能运过3人。往返一次5分钟,是往返时间。于是可知从9时开始,9时5分、9时10分、9时15分各运3人到岸,9时17分尚有4人在船上前往对岸,因此在等待渡河的人数为32-3×3-4=19,故正确答案为C。



48、单选题 某高校对一些学生进行问卷调查。在接受调查的学生中,准备参加注册会计师考试的有63人,准备参加英语六级考试的有89人,准备参加计算机考试的有47人,三种考试都准备参加的有24人,准备选择两种考试都参加的有46人,不参加其中任何一种考试的都15人。问接受调查的学生共有多少人?(  )
A. 120
B. 144
C. 177
D. 192

参考答案: A
本题解释:
正确答案是A 考点 容斥原理问题 解析 假设只参加一种考试的有X人,则可知:X+46×2+24×3=63+89+47,可知X=35,因此接受调查的学生共有35+46+24+15=120人。故正确答案为A。 注:将只符合一个条件、只符合两个条件和三个条件都符合的分别看作三个整体,以A、B、C表示三个集合,以X、Y、Z分别表示只符合一个条件、只符合两个条件和三个条件都满足的部分,则有A+B+C=X+2Y+3Z及A∪B∪C=X+Y+Z成立。



49、单选题 某公司甲、乙两个营业部共有50人,其中32人为男性。已知甲营业部的男女比例为5:3,乙营业部的男女比例为2:1,问甲营业部有多少名女职员?(  )
A. 18
B. 16
C. 12
D. 9

参考答案: C
本题解释:
正确答案是C 考点 和差倍比问题 解析 设甲营业部有3X名女职员,乙营业部有Y名女职员,则有5X+2Y=32;32+3X+Y=50,解得X=4,Y=6,故甲营业部有3×4=12名女职员,故正确答案为C。 秒杀技 有题意可知,两个营业部共有50-32=18名女职员,排除A。根据“乙营业部的男女比例为2:1”可知,乙营业部的男职员为偶数,由于男职员的总人数为偶数,则甲营业部的男职员人数同样为偶数。根据“已知甲营业部的男女比例为5:3”,甲营业部的女职员人数能同时被2和3整除,排除B、D,故正确答案为C。



50、单选题 一个五位数,左边三位数是右边两位数的5倍,如果把右边的两位数移到前面,则所得新的五位数要比原来的五位数的2倍还多75,则原来的五位数是(  )。
A. 12525
B. 13527
C. 17535
D. 22545

参考答案: A
本题解释:
【答案解析】直接代入,选A。



51、单选题 根据国务院办公厅部分节假日安排的通知,某年8月份有22个工作日,那么当年的8月1日可能是(  )。
A. 周一或周三
B. 周三或周日
C. 周一或周四
D. 周四或周日

参考答案: D
本题解释:
正确答案是D 考点 星期日期问题 解析 8月份为31天,有22个工作日,则休息日有9天,而31天大于四周小于五周,故有两种情况: ①1号为周日,保证休息日为1+2×4=9天; ②31号为周六,保证休息日为2×4+1=9天,则3号为周六,此时1号为周四。 故正确答案为D。 标签 分类分步



52、单选题 从12时到13时,钟的时针与分针可成直角的机会有多少次?(  )
A. 1
B. 2
C. 3
D. 4

参考答案: B
本题解释:
【答案解析】:选B,时针和分针在12点时从同一位置出发,按照规律,分针转过360度,时针转过30度,即分针转过6度(一分钟),时针转过0.5度,若一个小时内时针和分针之间相隔90度,则有方程:6x=0.5x+90和6x=0.5x+270成立,分别解得x的值就可以得出当前的时间,应该是12点180/11分(约为16分左右)和12点540/11分(约为50分左右),可得为两次。



53、单选题 教室里有若干学生,走了10名女生后,男生是女生人数的2倍,又走了9名男生后,女生是男生人数的5倍。问:最初有多少名女生?(  )
A. 15
B. 12
C. 10
D. 9

参考答案: A
本题解释:
A【解析】设最初有x名女生,则男生的数量为2(x-10),由题意可列等式x-10=5[2(x-10)-9],可得x=15。故选A。



54、单选题 一种溶液,蒸发掉一定量的水后,溶液的浓度为10%;再蒸发掉同样多的水后,溶液的浓度变为12%;第三次蒸发掉同样多的水后,溶液的浓度将变为多少?(  )
A. 14%
B. 17%
C. 16%
D. 15%

参考答案: D
本题解释:
正确答案是D 考点 浓度问题 解析 在蒸发的过程中,溶液的量发生变化,但其中溶质保持不变,因此将溶质作为解题突破口,给溶质赋值。为方便后面的计算,设其溶质为60,则可知其浓度在10%时,溶液量为600,其浓度在12%时,溶液量为500。这说明在变化过程中蒸发掉了水为100。因此第三次蒸发同样多的水后,溶液还剩400,故其浓度为15%。故正确答案为D。 标签 赋值思想



55、单选题 有20名工人修筑一段公路,计划15天完成。动工3天后抽出5人去其他工地,其余人继续修路。如果每人工作效率不变,那么修完这段公路实际用(  )
A. 19天
B. 18天
C. 17天
D. 16天

参考答案: A
本题解释:
【答案】A。解析:5人12天完成的工作量分配给15人需要5×12÷15=4天完成,所以修完这段公路实际用15+4=19天。



56、单选题 杂货店分三次进了一些货物,已知每一次的进货单价都是上一次的80%,且第一次的进货单价为5元。已知这些货物恰好能够排成一个三层的空心方阵,且最内层、中间层和最外层恰好分别是第一、二、三次所进的货物,且最外层每边有7个货物。现要保证20%利润率的情况下,杂货店应该将货物至少定为多少元?(  )
A. 3.90
B. 4.12
C. 4.36
D. 4.52

参考答案: D
本题解释:
【解析】D。三次的单价分别为5元、5×80%=4元、4×80%=3.2元。最外层有货物(7-1)x4=24个,中间层有24-8=16个,最内层有I6-8=8个。所以总进价为3.2x24+4xl6+5x8=l80.8元,要保证20%的利润率,货物定价为180.8x(1+20%)÷(24+16+8)=4.52元。



57、单选题 某单位2011年招聘了65名毕业生,拟分配到该单位的7个不同部门,假设行政部门分得的毕业生人数比其他部门都多,问行政部门分得的毕业生人数至少为多少名?(  )
A. 10
B. 11
C. 12
D. 13

参考答案: B
本题解释:
正确答案是B 考点 趣味数学问题 解析 65÷7=9余2,即平均分配给7个不同部门还剩余2名毕业生,已知行政部门毕业生毕业生最多,所以只需将剩余的2名毕业生分配给行政部门即可(如果只分配1名,那么其他部门也会出现不少于10人的情况),可得9+2=11,故正确答案为B。



58、单选题 科考队员在冰面上钻孔获取样本,测量不同空心之间的距离,获得的部分数据分别为1米、3米、6米、12米、24米、48米。问科考队员至少钻了多少个孔?(  )
A. 4
B. 5
C. 6
D. 7

参考答案: D
本题解释:
正确答案是D 考点 几何问题 解析 所测距离组成一个数列1、3、6、12、24、48,易知该数列中任一项均大于其前面所有项之和,故这6条线段不可能组成封闭回路,即6条线段最少7个端点,至少钻7个孔。故正确答案为D。



59、单选题 某种汉堡包每个成本4.5元,售价10.5元。当天卖不完的汉堡包即不再出售,在过去十天里,餐厅每天都会准备200个汉堡包,其中有六天正好卖完,四天各剩余25个。问这十天该餐厅卖汉堡包共赚了多少元?(  )
A. 10850
B. 10950
C. 11050
D. 11350

参考答案: B
本题解释:
正确答案是B 考点 鸡兔同笼问题 解析 先考虑十天全卖出去,然后分析差异,那么共赚了(10.5-4.5)×200×10-10.5×25×4=10950元(没卖出的部分,不仅每个没赚到10.5-4.5=6元,还赔进去成本4.5元),故正确答案为B。 标签 差异分析



60、单选题 从1、2、3、4、5、6、7、8、9中任意选三个数,使他们的和为偶数,则有多少种选法?(  )
A. 40
B. 41
C. 44
D. 46

参考答案: C
本题解释:
【答案解析】:选C,形成偶数的情况:奇数+奇数+偶数=偶数;偶数+偶数+偶数=偶数=>其中,奇数+奇数+偶数=偶数=>C(2,5)[5个奇数取2个的种类]×C(1,4)[4个偶数取1个的种类]=10×4=40,偶数+偶数+偶数=偶数=>C(3,4)=4[4个偶数中选出一个不要],综上,总共4+40=44



61、单选题 甲、乙两人卖数量相同的萝卜,甲打算卖1元2个,乙打算卖1元3个。如果甲乙两人一起按2元5个的价格卖掉全部的萝卜,总收入会比预想的少4元钱。问两人共有多少个萝卜?(  )
A. 420
B. 120
C. 360
D. 240

参考答案: D
本题解释:
正确答案是D 考点 经济利润问题 解析 设原来的萝卜共有a个,则每个人都有a/2个萝卜,根据题意有:(1/2×a/2+1/3×a/2)-2a/5=4,解得a=240,故正确答案为D。 秒杀技 由题意可知甲打算15元30个,乙打算10元30个,即25元60个。合在一起则为24元60个,也即每60个萝卜少卖1元,因此少卖4元应为240个,这里的30的由来是从2、3、5的最小公倍数想到的。



62、单选题 一种打印机,如果按销售价打九折出售,可盈利215元,如果按八折出售,就要亏损125元。则这种打印机的进货价为(  )。
A. 3400元
B. 3060元
C. 2845元
D. 2720元

参考答案: C
本题解释:
正确答案是C 考点经济利润问题解析解析1:按售价的九折出售可盈利215元,按八折出售亏损125元,因此售价的1/10为215+125=340元,售价为3400元,进货价3400-340-215=2845元,因此正确答案为C。 解析2:设售价为x元,根据题意又0.9x-215=0.8x+125,解得x=3400,进货价为3400-340-215=2845元。因此正确答案为C。 秒杀技根据题意。进货价加215元应能被9整除,只有C项符合。



63、单选题 若x,y,z是三个连续的负整数,并且x>y>z,则下列表达式中正奇数的是(  )。
A. yz-x
B. (x-y)(y-z)
C. x-yz
D. x(y+z)

参考答案: B
本题解释:
正确答案是B 考点 计算问题 解析 三个连续的负整数,有两种情形:奇、偶、奇;偶、奇、偶。分情况讨论: (1)当x、y、z依次为奇、偶、奇数时,直接赋值x=-1,y=-2,z=-3,代入选项可排除C、D; (2)当x、y、z依次为偶、奇、偶数时,直接赋值x=-2,y=-3,z=-4,代入选项可排除A、C、D。 故正确答案为B。 标签 赋值思想分类分步



64、单选题 某城市居民用水价格为:每户每月不超过5吨的部分按4元/吨收取,超过5吨不超过10吨的部分按6元/吨收取,超过10吨的部分按8元/吨收取。某户居民两个月共交水费108元,则该户居民这两个月用水总量最多为多少吨?(  )
A. 21
B. 24
C. 17.25
D. 21.33

参考答案: A
本题解释:
正确答案是A 考点 分段计算问题 解析 在花费相同的情况下,要使两个月用水量最多,须使水价相对较便宜阶段的用水量最大,即两个月的“不超过5吨”和“5吨到10吨”部分的水量尽量多,通过计算2×(4×5+6×5)=100元,剩余180-100=8元,由于超出10吨的部分按8元/吨收取,故用水量为2×10+1=21吨。故正确答案为A。



65、单选题 李华步行以每小时4千米的速度从学校出发到20.4千米外的冬令营报到。0.5小时后,营地老师闻讯前往迎接,每小时比李华多走1.2千米。又过了1.5小时,张明从学校骑车去营地报到。结果3人同时在途中某地相遇。问:张明每小时的速度是多少千米?(  )
A. 25
B. 50
C. 30
D. 20

参考答案: D
本题解释:
D老师速度=4+1.2=5.2千米/时,与李华相遇时间是老师出发后(20.4-4×0.5)÷(4+5.2)=2小时,相遇地点距离学校4×(0.5+2)=10千米,所以张明的速度=10÷(2-1.5)=20千米/时。



66、单选题 2004×(2.3×47+2.4)÷(2.4×47-2.3)的值为(  )。
A. 2003
B. 2004
C. 2005
D. 2006

参考答案: B
本题解释:
正确答案是B 考点计算问题解析原式=2004×(2.3×47+2.4)÷[(2.3+0.1)×47-2.3]=2004×(2.3×47+2.4)÷(2.3×47+4.7-2.3)=2004×(2.3×47+2.4)÷(2.3×47+2.4)=2004。因此正确答案为B。



67、单选题 一行10个人来到电影院看电影,前9人入坐之后,第十人无论怎么坐都至少有一个人与他相邻,那么电影院这排最多有多少座位?(  )。
A. 10
B. 19
C. 26
D. 27

参考答案: D
本题解释:
D。本题可采用极端法。既然要第十人旁边一定有人,那么最极端的排法就是将座位按每3个分成一组,每组最中间的座位坐人,故9人最多有9*3=27,所以选择D选项。



68、单选题 某剧院有25排座位,后一排比前一排多2个座位,最后一排有70个座位。这个剧院一共有多少个座位?(  )
A. 1104 
B. 1150 
C. 1170 
D. 1280

参考答案: B
本题解释:
B[解析]最后一排有70个坐位,则前面24排每一排少两个,第一排有70-24×2=22,构成一个等差数列,公差为2,首项为22,S25=25×22+(25×24×2)÷2=1150个,选择B。



69、单选题 某商品按定价的80%(八折)出售,仍能获得20%的利润,问定价时期望的利润率是多少?(  )
A. 50%
B. 40%
C. 30%
D. 20%

参考答案: A
本题解释:
【答案解析】设成本为1,根据定价的80%=1.2,所以定价为1.5,1.5-1=0.5,选A。 考查对于利润的理解:单个商品利润=售价-成本,获得百分之几的利润是相对于成本来说的,如我们生产一支笔成本1元,我们将它以1.5元出售,则获得利润为0.5元,因为(0.5/1)*100%=50%,所以获得了50%的利润解法如下:设定价为y,成本为x,则按定价80%出售,仍获得20%利润用数学公式表示就是0.8y-x=0.2x,即售价-成本=利润因此,得y=3x/2,或按原价出售,则利润为,y-x=3x/2-x=x/2即利润率为50%。



70、单选题 某市现有70万人口,如果5年后城镇人口增加4%,农村人口增加5.4%,则全市人口将增加4.8%,那么这个市现有城镇人口(  )。
A. 30万
B. 31.2万
C. 40万
D. 41.6万

参考答案: A
本题解释:
【答案解析】可以设现有城镇人口为X万,那么农村人口为70-X,得出等式4%×X+5.4%×(70-X)=70×4.8%,解出结果为30。



71、单选题 某区要从10位候选人中投票选举人大代表,现规定每位选举人必须从这10位中任选两位投票,问至少要有多少位选举人参加投票,才能保证有不少于10位选举人投了相同两位候选人的票?(  )
A. 382位
B. 406位
C. 451位
D. 516位

参考答案: B
本题解释:
【答案】B。解析:从10位候选人中选2人共有种票,则每种票有9张相同时需要×9=405个人投票,那么只需要再加一人可以保证有不少于10人投了相同两位候选人的票。



72、单选题 2003年8月1日是星期五,那么2005年8月1日是(  )。
A. 星期一
B. 星期二
C. 星期三
D. 星期四

参考答案: A
本题解释:
正确答案是A 考点星期日期问题解析2004年是闰年,有366天,所以2003年8月1日与2005年8月1日之间共有(365+366)天。365+366=350+14+1+350+14+2,即(365+366)÷7的余数为3,因此2005年8月1日是星期五过三天,也即为星期一,因此正确答案为A。



73、单选题 某商场有7箱饼干,每箱装的包数相同,如果从每箱里拿出25包饼干,那么,7个箱里剩下的饼干包数相当于原来的2箱饼干,原来每箱饼干有多少包?(  )。
A. 25
B. 30
C. 50
D. 35

参考答案: D
本题解释:
【解析】比较简单,可以直接列方程:7(X-25)=2X,所以X=35,选D。



74、单选题 某城市共有A、B、C、D、E五个区,A区人口是全市人口的5/17,B区人口是A区人口的2/5,C区人口是D区和E区人口总数的5/8,A区比C区多3万人,全市共有多少万人?(  )
A. 20.4
B. 30.6
C. 34.5
D. 44.2

参考答案: D
本题解释:
正确答案是D 考点 和差倍比问题 解析 由A区人口是全市人口的5/17,将全市人口看做17份,则A区有5份,B区有2份,于是C、D、E三区共有10份,而在此三区中,C区人口是D区和E区人口总数的5/8,也即C区人口是此三区人口总数的5/13,因此C区人口为(5/13×10)份,于是A区比C区多5-50/13=15/13份,此部分人口数为3万人,于是全市共有3÷15/13×17=44.2(万人)。故正确答案为D。 标签 赋值思想



75、单选题 某汽车厂离生产甲、乙、丙三种车型,其中乙型产量的3倍与丙型产量的6倍之和等于甲型产量的4倍,甲型产量与乙型的2倍之和等于丙型产量的7倍。则甲、乙、丙三型产量之比为(  )。
A. 5:4:3
B. 4:3:2
C. 4:2:1
D. 3:2:1

参考答案: D
本题解释:
正确答案是D 考点 和差倍比问题 解析 设甲的产量为x,乙的产量为y,丙的产量为z。则可得如下: 3y+6z=4x,x+2y=7z,两式相加可得3x+z=5y,直接带入选项,只有D符合,故正确答案为D。 秒杀技 得到3y+6z=4x后,观察该式,可知x应为3的倍数,只有D符合。 标签 直接代入



76、单选题 某船第一次顺流航行21千米又逆流航行4千米,第二天在同一河道中顺流航行12千米,逆流航行7千米,结果两次所用的时间相等。假设船本身速度及水流速度保持不变,则顺水船速与逆水船速之比是(  )。
A. 2.5:1
B. 3:1
C. 3.5:1
D. 4:1

参考答案: B
本题解释:
正确答案是B 考点行程问题解析解析1:设顺水和逆水船速分别为a、b,根据题意又21/a+4/b=12/a+7/b,解得a/b=3,答案为B。 解析2:两次航行时间相等,除去顺水和逆水航行相同的距离,21-12=9千米,7-4=3千米,说明顺水行驶9千米与逆水行驶3千米所用的时间相等,行驶的路程比为9:3=3:1,因此速度比为3:1,故正确答案为B。



77、单选题 某高校2006年度毕业学生7650名,比上年度增长2%,其中本科生毕业数量比上年度减少2%,而研究生毕业数量比上年度增加10%,那么,这所高校今年毕业的本科生有(  )。
A. 3920人
B. 4410人
C. 4900人
D. 5490人

参考答案: C
本题解释:
正确答案是C 考点和差倍比问题解析假设去年研究生毕业数为A,本科生毕业数为B,那么今年研究生毕业数为1.1A,本科生毕业数为0.98B。由题意知:A+B=7650÷(1+2%),1.1A+0.98B=7650,解得B=5000人。则今年本科生毕业数量为5000×0.98=4900人,故正确答案为C。 秒杀技由“本科生比上年度减少2%”可知“今年本科生数=98%×去年本科生数”(注意98%是百分数,本质上也是个分数),所以今年本科生应能够被49整除。由“研究生毕业数量比上年增加10%”知“今年研究生数=110%×去年研究生数”,所以今年研究生数应能够被11整除,据此两条得出正确答案为C。



78、单选题 有8种颜色的小球,数量分别为2、3、4、5、6、7、8、9,将它们放进一个袋子里面,问拿到同颜色的球最多需要几次?(  )
A. 6
B. 7
C. 8
D. 9

参考答案: D
本题解释:
【答案解析】解析:"抽屉原理"问题。先从最不利的情况入手,最不利的情况也就使次数最多的情况。即8种小球,每次取一个,且种类不相同(这就是最不利的情况)。然后任取一个,必有重复的,所以是最多取9个。



79、单选题 某人在雅虎上申请了一个邮箱,邮箱密码是由0至9中任意4个数字组成,他任意输入4个数字,输入正确密码的概率是(  )。
A. 10的3次方
B. 10的4次方
C. 10的5次方
D. 10的6次方

参考答案: B
本题解释:
B[解析]正确的密码只有一个,这10个数字的组合共有10的4次方个,所以答案是B。



80、单选题 某河段中的沉积河沙可供80人连续开采6个月或60人连续开采10个月。如果要保证该河段河沙不被开采枯竭,问最多可供多少人进行连续不间断的开采?(假定该河段河沙沉积的速度相对稳定)(  )
A. 25
B. 30
C. 35
D. 40

参考答案: B
本题解释:
正确答案是B 考点 牛吃草问题 解析 设河沙初始量为M,每月沉积量为N。则有: M=(80-N)×6=(60-N)×10,解得N=30,即每个月的沉积量可供30人开采; 可知当开采人数为30时,才能保证连续不间断的开采,故正确答案为B。



81、单选题 共有20个玩具交给小王手工制作完成。规定,制作的玩具每合格一个得5元,不合格一个扣2元,未完成的不得不扣。最后小王共收到56元,那么他制作的玩具中,不合格的共有(  )个。
A. 2
B. 3
C. 5
D. 7

参考答案: A
本题解释:
正确答案是A 考点不定方程问题解析设小王制作合格玩具x个,不合格玩具y个,未完成的有z个。则x+y+z=20,5x-2y=56。为不定方程组,将选项代入验证,仅当y=2时,x与z有正整数解。故正确答案为A。



82、单选题 桌面上有两个半径分别为2厘米和40厘米的圆环,让小圆环沿着大圆环外边缘滚动一圈,则小圆环滚动的圈数是:(  )
A. 10
B. 20
C. 40
D. 80

参考答案: B
本题解释:
【答案解析】圆的周长之比等于半径之比,所以大圆的周长是小圆的20倍,即小圆需要滚动20圈。



83、单选题 现有50名学生都做物理、化学实验,如果物理实验做正确的有40人,化学实验做正确的有31人,两种实验都做错的有4人,则两种实验都做对的有(  )。
A. 27人
B. 25人
C. 19人
D. 10

参考答案: B
本题解释:
【答案解析】容斥问题,40+31-X=50-4,所以X=25,选B。



84、单选题 某儿童艺术培训中心有5名钢琴教师和6名拉丁舞教师,培训中心将所有的钢琴学员和拉丁舞学员共76人分剐平均地分给各个老师带领,刚好能够分完,且每位老师所带的学生数量都是质数。后来由于学生人数减少,培训中心只保留了4名钢琴教师和3名拉丁舞教师,但每名教师所带的学生数量不变,那么目前培训中心还剩下学员多少人?(  )
A. 36
B. 37
C. 39
D. 41

参考答案: D
本题解释:
正确答案是D 考点 函数最值问题 解析 假定每个钢琴教师带x个学生,每个拉丁舞教师带y个学生,则根据题意有:5x+6y=76。根据此方程,可知x必为偶数,而x与y均为质数,因此x=2,代回可得y=11。于是在学生人数减少后,还剩下学员为4×2+3×11=41个,故正确答案为D。 标签 数字特性



85、单选题 从12时到13时,钟的时针与分针可成直角的机会有(  )。
A. 1次
B. 2次
C. 3次
D. 4次

参考答案: B
本题解释:
【答案解析】一个小时内成直角只有两次,选B。



86、单选题 小明今年a岁,芳芳明年(a-4)岁,再过c年,他们相差(  )。
A. 4岁
B. c+4岁
C. 5岁
D. c-3岁

参考答案: C
本题解释:
【解析】不管过多少年,两人年龄差永远不会改变;今年芳芳是a-5岁,所以相差5岁,选C。



87、单选题 100个孩子按1、2、3…依次报数,从报奇数的人中选取k个孩子,他们所报数字之和为1949,问k最大值为多少?(  )
A. 43
B. 44
C. 45
D. 46

参考答案: A
本题解释:
【答案】A。解析:奇数个奇数的和为奇数,故k的最大值应是奇数,排除B、D;从1开始,45个连续奇数的和是452>1949,排除C,此题答案为A。



88、单选题 一篇文章,现有甲、乙、丙三人,如果由甲、乙两人合作翻译,需要10小时完成,如果由乙、丙两人合作翻译,需要12小时完成。现在先由甲、丙两人合作翻译4小时,剩下的再由乙单独去翻译,需要12小时才能完成,则,这篇文章如果全部由乙单独翻译,要多少个小时完成?(  )
A. 15
B. 18
C. 20
D. 25

参考答案: A
本题解释:
正确答案是A 考点工程问题解析设总量为1,由题意知甲乙合作的效率为1/10,乙丙合作的效率为1/12。题目给出完成该项工程的过程是甲丙先合作4个小时,乙单独翻译12个小时。在这个工作过程中,甲完成了4个小时的工作量,已完成了12个小时的工作量,丙完成了4个小时的工作量,保持此总量不变,将乙的工作拆分为三个独立的4个小时,重新为如下工作过程:甲乙先合作4个小时,乙丙再合作4个小时,最后乙单独做4个小时,仍然可以保证工程完成。于是假设乙的效率为y,可知4×1/10+4×1/12+4y=1,解得y=1/15,于是乙单独完成需要15个小时,故正确答案为A。



89、单选题 某人银行账户今年底余额减去1500元后,正好比去年底余额减少了25%,去年底余额比前年余额的120%少2000元,则此人银行账户今年底余额一定比前年底余额(  )。
A. 多1000元
B. 少1000元
C. 多10%
D. 少10%

参考答案: D
本题解释:
正确答案是D 考点 和差倍比问题 解析 设前年底余额为m元,则去年为(1.2m-2000)元,今年为[0.75×(1.2m-2000)+1500]元,化简得今年为0.9m元,即今年底余额比前年底减少10%,故正确答案为D。 标签 逆向考虑



90、单选题 篮球规则中得分有3分,2分,1分,若在一次比赛中,队员A一人得了13分,那么他的得分组合共(  )种。
A. 18 
B. 19 
C. 20 
D. 21

参考答案: D
本题解释:
D[解析]当A的3分分别拿到4,3,2,1,0次的时候,对应的组合数分别是1,3,4,6,7,所以A的得分组合共有1+3+4+6+7=21种,选D。



91、单选题 某市对52种建筑防水卷材产品进行质量抽检,其中有8种产品的低温柔度不合格,10种产品的可溶物含量不达标,9种产品的接缝剪切性能不合格,同时两项不合格的有7种,有1种产品这三项都不合格,则三项全部合格的建筑防水卷材产品有多少种?(  )
A. 37
B. 36
C. 35
D. 34

参考答案: D
本题解释:
正确答案是D 考点 容斥原理问题 解析 本题注意按照不合格得到三个类,进行容斥原理分析。分别设三项全部合格、仅一项不合格的产品有A、B种,根据题意可得B+7+1=52-A,3×1+2×7+1×B=8+10+9,解得A=34,B=10。故正确答案为D。 公式:三集合容斥原理中,将只符合一个条件、只符合两个条件和三个条件都符合的分别看做三个整体,以A、B、C表示三个集合,以X、Y、Z分别表示只符合一个条件、只符合两个条件和三个条件都满足的部分,则有A+B+C=X+2Y+3Z及A∪B∪C=X+Y+Z成立。 标签 整体考虑公式应用



92、单选题 一个慢钟每小时比标准时间慢5分钟,一个快钟每小时比标准时间快3分钟。如果将两个钟同时调到标准时间,在24个小时内的某个时间,慢钟显示7:50,快钟显示9:10。那么此时的标准时间应该是什么?(  )
A. 8:20
B. 8:30
C. 8:40
D. 8:50

参考答案: C
本题解释:
C.【解析】这是一道快慢钟问题。快钟每小时比慢钟快8分钟,而7:50与9:10之间相差80分钟,则此时距离将两个钟调成标准时间为80÷8=10个小时,10个小时的时间,慢钟共少走了5×10=50分钟,则标准时间应该为8:40。因此,本题的正确答案为C选项。



93、单选题 (101+103+…+199)-(90+92+…+188)=(  )。
A. 100 
B. 199 
C. 550 
D. 990

参考答案: C
本题解释:
C[解析]提取公因式法。101-90=11,103-92=11,……,199-188=11,总计有50个这样的算式,所以50×11=550,选择C。



94、单选题 两个数的差是2345,两数相除的商是8,求这两个数之和(  )。
A. 2353
B. 2896
C. 3015
D. 3456

参考答案: C
本题解释:
C[解析]根据题意,两数相除商是8,则说明被除数是除数的8倍,两数相减结果2345应为除数的7倍,从而求得除数2345÷7=335,被除数为335×8=2680,两数和为2680+335=3015,答案为C。



95、单选题 在1至100这100个数中,有既不能被5整除也不能被9整除的数,它们的和是(  )。
A. 1644
B. 1779
C. 3406
D. 3541

参考答案: D
本题解释:
【答案解析】先求出被5或9整除的数的和。1至100中被5整除的数有5,10,15,…,100,和为5+10+15+…+100=(100+5)×20÷2=10501至100中被9整除的数有9,18,…,99,和为9+18+27+…+99=(9+99)×11÷2=594又因为1~100中,45,90这两个数同时被5与9整除,于是所求的和是(1+2+…+100)-(5+10+…+100)-(9+18+…+99)+(45+90)=3541。因此,本题正确答案为D。



96、单选题 某区要从10位候选人中投票选举人大代表,现规定每位选举人必须从这10位中任选两位投票,问至少要有多少位选举人参加投票,才能保证有不少于10位选举人投了相同两位候选人的票?(  )
A. 382位
B. 406位
C. 451位
D. 516位

参考答案: B
本题解释:
【答案】B。解析:从10位候选人中选2人共有种票,则每种票有9张相同时需要×9=405个



97、单选题 在400米环形跑道上,A、B两点相距100米。甲、乙两人分别从A、B两点同时出发,按逆时针方向跑步。甲每秒跑5米,乙每秒跑4米。每人每跑100米,都要停10秒。那么,甲追上乙需要的时间是(  )秒。
A. 80
B. 100
C. 120
D. 140

参考答案: D
本题解释:
【答案解析】假设甲、乙都不停地跑,那么甲追上乙的时间是100÷(5-4)=100(秒)。甲、乙每跑100米停10秒,等于甲跑20秒(100÷5)休息10秒,乙跑25秒(100÷4)休息10秒。跑100秒甲要停4次(100÷20-1),共用140秒(100+10×4),此时甲已跑的路程为500米。在第130秒时乙已跑路程为400米(他此时已休息3次,花去30秒),并在该处休息到第140秒,甲刚好在乙准备动身时赶到,他们碰到一块了。所以,甲追上乙需要的时间是140秒。故选D。



98、单选题 六位同学数学考试的平均成绩是92.5分,他们的成绩是互不相同的整数,最高分是99分,最低分是76分,则按分数从高到低居第三位的同学至少得多少分(  )。
A. 93
B. 94
C. 95
D. 96

参考答案: C
本题解释:
C。本题为构造类题目。总分为92.5×6=555,去掉最高分和最低分后还有555-99-76=380。要使第三名分尽可能的低,首先第二名分要尽可能高,即为98分(还余282分)。而第四和第五名的分数要尽量的高,与第三名的分最接近,三者的分为93,94,95。那么最高分至少为95。所以选择C选项。



99、单选题 A、B两地相距1350米,甲和乙分别从A、B两地出发,相向而行。已知甲的速度为4千米/小时,乙的速度为5千米/小时,1分钟后两人调头反方向而行,再过3分钟,两人再次调头反方向而行,以此类推,再过5、7、……(连续奇数)分钟调头而行,请问,出发多少分钟后两人才能相遇?()
A. 9
B. 25
C. 49
D. 81

参考答案: D
本题解释:
【答案解析】如果两人不调头走,两人相遇需要1350÷1000÷(4+5)×60=9分钟。如果以初始方向为正方向,则两个人分别走了1、-3、5、-7、……分钟的路程,由于9=1-3+5-7+9-11+13-15+17,则出发后1+3+5+7+9+11+13+15+17=81分钟两人相遇。



100、单选题 某服装厂生产某种定型冬装,9月份销售每件冬装的利润是出厂价的25%(每件冬装的利润=出厂价-成本)。10月份将每件冬装的出厂价调低10%,成本降低10%,销售件数比9月份增长80%,那么该厂10月份销售这种冬装的利润比9月份的利润总额增长:(  )
A. 2%
B. 8%
C. 40.5%
D. 62%

参考答案: D
本题解释:
【解析】D。设出厂价为100,则9月份单件利润是25,成本为75。10月的出厂价为90,成本为75×0.9=67.5,单件利润为90-67.5=22.5。设9月的销售量为1,则10月为1.8。9月总利润为25,10月为1.8×22.5=40.5,10月比9月总利润增长40.5÷25-1=62%。




首页 上页 1 2 下页 尾页 2/2/2
微信搜索关注"91考试网"公众号,领30元,获取公务员事业编教师考试资料40G
【省市县地区导航】【考试题库导航】
 ★ 银行招聘考试省级导航 ★ 
全国 A安徽 B北京 C重庆 F福建 G广东 广西 甘肃 贵州 H河南 河北 湖南 湖北 黑龙江 海南 J江苏 江西 吉林 L辽宁 N内蒙古 宁夏 Q青海 S山东 山西 陕西 四川 上海 T天津 X新疆 西藏 Y云南 Z浙江
 ★ 银行招聘考试 ★ 

电脑版  |  手机版  |  返回顶部