★ 银行招聘考试 ★ 
 ★ 银行招聘考试题库 ★ 
 ★ 压中真题已成为一种习惯 ★ 
财务管理 常识判断 法律常识 管理学 会计学 货币银行学 计算机 金融学 经济学 市场营销学 逻辑判断 数学运算 数字推理 图形推理 言语理解 资料分析 病句判断 定义判断 片段阅读 选词填空 时事政治

银行招聘考试【数学运算】考点巩固(2016年06月26日)(二)

时间:2016-06-26 18:38:51

微信搜索关注"91考试网"公众号,领30元,获取事业编教师公务员等考试资料40G

1、单选题 用3、9、0、1、8、5分别组成一个最大的六位数与最小的六位数,它们的差是(  )。
A. 15125
B. 849420
C. 786780
D. 881721

参考答案: D
本题解释:
D最大的数为985310,最小的数为103589,故它们的差为881721。



2、单选题 一个车队有三辆汽车,担负着五家工厂的运输任务,这五家工厂分别需要7、9、4、10、6名装卸工,共计36名;如果安排一部分装卸工跟车装卸,则不需要那么多装卸工,而只需要在装卸任务较多的工厂再安排一些装卸工就能完成装卸任务,那么在这种情况下,总共至少需要(  )名装卸工才能保证各厂的装卸需求。
A. 26
B. 27
C. 28
D. 29

参考答案: A
本题解释:
正确答案是A 考点统筹规划问题解析设三辆汽车分别为甲、乙、丙车;五个工厂分别为A、B、C、D、E厂,则最初状态甲、乙、丙三车上人数为0,五工厂分别有人7、9、4、10、6人。我们在五个工厂都减少1名装卸工时,五工厂共减少5人,而每辆车上的人数各增加1人,车上共增加3人,所以装卸工的总人数减少2人。当车上增加到4人,C厂剩余的人数为0,此时每辆车上的人数每增加1人,车上共增加3人,而五工厂共减少4人,所以装卸工的总人数仍减少。当车上增加到6人,C、E厂剩余的人数为0,此时每车上的人数每增加1人,车上共增加3人,而五工厂共减少3人,所以装卸工的总人数不变。当车上增加到7人,A、C、E厂剩余的人数为0,此时每辆车上的人数如果再每增加1人,车上共增加3人,而五工厂共减少2人,所以装卸工的总人数增加。所以当车上的人数为6人(或7人)的时候,装卸工的总人数最少。如果每个车上有6个人,A、B、C、D、E厂剩余人数分别为1、3、0、4、0,三辆车上共有18人,总共需装卸工26人。如果每个车上有7个人,A、B、C、D、E厂剩余人数分别为0、2、0、3、0,三辆车上共有21人,总共也需装卸工26人。故正确答案为A。 注释:有M家汽车负担N家工厂的运输任务,当M

3、单选题 一个空的容积为64 升的鼓形圆桶上有A、B 两孔,一种蒸馏水从A 孔流入同 时从B 孔流出,如果通过A 孔的流速为3 升/小时,那么在B 孔的流速为多少升时才能保证用96 小时恰好装满容器?(  )
A. 4/3    
B. 8/3    
C. 7/3    
D. 3/7

参考答案: C
本题解释:
【答案】C[解析]从A孔流入同时从B孔流出,设流速X,则容器实际蓄水速度为3-X,所以64/(3-X)=96,求出X=7/3。



4、单选题 若x,y,z是三个连续的负整数,并且x>y>z,则下列表达式中正奇数的是(  )。
A. yz-x
B. (x-y)(y-z)
C. x-yz
D. x(y+z)

参考答案: B
本题解释:
正确答案是B 考点 计算问题 解析 三个连续的负整数,有两种情形:奇、偶、奇;偶、奇、偶。分情况讨论: (1)当x、y、z依次为奇、偶、奇数时,直接赋值x=-1,y=-2,z=-3,代入选项可排除C、D; (2)当x、y、z依次为偶、奇、偶数时,直接赋值x=-2,y=-3,z=-4,代入选项可排除A、C、D。 故正确答案为B。 标签 赋值思想分类分步



5、单选题 一杯糖水,第一次加入一定量的水后,糖水的含糖百分比变为15%;第二次又加入同样多的水,糖水的含糖百分变比为12%;第三次再加入同样多的水,糖水的含糖百分比将变为多少?(  )
A. 8%
B. 9%
C. 10%
D. 11%

参考答案: C
本题解释:
【答案】C。解析:设第一次加水后糖水总量为100,糖为100×15%=15,则第二次加水后糖水变为15÷12%=125,所以每次加入的水为125-100=25,故第三次加水后糖水的含糖百分比为15÷(125+25)=10%。



6、单选题 甲、乙两人卖数量相同的萝卜,甲打算卖1元2个,乙打算卖1元3个。如果甲乙两人一起按2元5个的价格卖掉全部的萝卜,总收入会比预想的少4元钱。问两人共有多少个萝卜?(  )
A. 420
B. 120
C. 360
D. 240

参考答案: D
本题解释:
正确答案是D 考点 经济利润问题 解析 设原来的萝卜共有a个,则每个人都有a/2个萝卜,根据题意有:(1/2×a/2+1/3×a/2)-2a/5=4,解得a=240,故正确答案为D。 秒杀技 由题意可知甲打算15元30个,乙打算10元30个,即25元60个。合在一起则为24元60个,也即每60个萝卜少卖1元,因此少卖4元应为240个,这里的30的由来是从2、3、5的最小公倍数想到的。



7、单选题 200除500,商2余100,如果被除数和除数都扩大3倍,则余数是(  )。
A. 100
B. 200
C. 300
D. 100000

参考答案: C
本题解释:
【解析】商不变,余数跟着扩大3倍,所以是300,选C。



8、单选题 一位长寿老人生于19世纪90年代,有一年他发现自己的年龄的平方刚好等于当年的年份。问这位老人出生于哪一年?(  )
A. 1894年
B. 1892年
C. 1898年
D. 1896年

参考答案: B
本题解释:
正确答案是B 考点 年龄问题 解析 由于年龄的平方等于当年的年份,而年份介于1890到2010之间,所以该老人应该是40多岁,而已知:43的平方为1849,44的平方为1936,45的平方为2025。因此,该老人在1936年应为44岁,1936-44=1892。故正确答案为B。



9、单选题 一公司销售部有4名区域销售经理,每人负责的区域数相同,每个区域都正好有两名销售经理负责,而任意两名销售经理负责的区域只有1个相同。问这4名销售经理总共负责多少个区域的业务?(  )
A. 12
B. 8
C. 6
D. 4

参考答案: C
本题解释:
正确答案是C 考点 容斥原理问题 解析 由题意,每个区域正好有两名销售经理负责,可知2个经理一组对应一个区域;而根据,任意两名销售经理负责的区域只有1个相同,可知2个经理一组仅对应一个区域。由此两条可知,区域数其相当于从4个经理中任选2个有多少种组合,一种组合就对应一个区域,故共有6个区域。因此正确答案为C。



10、单选题 某玩具店同时卖出一个拼装玩具和一架遥控飞机,拼装玩具66元,遥控飞机120元,拼装玩具赚了10%,而遥控飞机亏本20%,则这个商店卖出这两个玩具赚钱或是亏本多少(  )
A. 赚了12元
B. 赚了24元
C. 亏了14元
D. 亏了24元

参考答案: D
本题解释:
D【解析】根据题意,拼装玩具赚了66÷(1+10%)×10%=6元,遥控飞机亏本120÷(1-20%)×20%=30元,故这个商店卖出这两个玩具亏本30-6=24元。



11、单选题 科考队员在冰面上钻孔获取样本,测量不同空心之间的距离,获得的部分数据分别为1米、3米、6米、12米、24米、48米。问科考队员至少钻了多少个孔?(  )
A. 4
B. 5
C. 6
D. 7

参考答案: D
本题解释:
正确答案是D 考点 几何问题 解析 所测距离组成一个数列1、3、6、12、24、48,易知该数列中任一项均大于其前面所有项之和,故这6条线段不可能组成封闭回路,即6条线段最少7个端点,至少钻7个孔。故正确答案为D。



12、单选题 真分数a/7化为小数后,如果从小数点后第一位数字开始连续若干数字之和是1992,那么A的值是(  )。
A. 6
B. 5
C. 7
D. 8

参考答案: A
本题解释:
【答案解析】:由于除7不能整除的的数结果会是‘142857’的循环(这个可以自己测算一下),1+4+2+8+5+7=27,1992/27余数为21,重循环里边可知8+5+7+1=21,所以8571会多算一遍(多重复的一遍,一定在靠近小数点的位置上),则小数点后第一位为8,因此a为6。



13、单选题 有一串数:1,3,8,22,60,164,448,……;其中第一个数是1,第二个数是3,从第三个数起,每个数恰好是前两个数之和的2倍。那么在这串数中,第2000个数除以9的余数是(  )。
A. 1
B. 2
C. 3
D. 4

参考答案: C
本题解释:
C。本题属于周期类问题。用数列的前几项除以9取余数,得到138462705138……是一个循环数列,周期T=9。根据周期的公式,2000/9余数为2,因此第2000个数除以9得到的余数是3,所以选择C选项。



14、单选题 1000克苹果价值2.4元,柚子的价格比苹果贵一倍,如果两个柚子的重量等于5个每个重100克的苹果,3.6元能买多少个柚子?(  )
A. 3
B. 4
C. 6
D. 10

参考答案: A
本题解释:
A两个柚子重500克,即1个柚子重250克,由题意可知,1000克柚子的价格为4.8元,所以250克柚子为1.2元,即1个柚子1.2元,所以3.6元可买3个柚子。



15、单选题 一列客车长250米,一列货车长350米,在平行的轨道上相向行驶,从两车头相遇到两车尾相离经过15秒,已知客车与货车的速度比是5∶3。问两车的速度相差多少?(  )
A. 10米/秒
B. 15米/秒
C. 25米/秒
D. 30米/秒

参考答案: A
本题解释:
【答案解析】根据题意可知,两车的速度和为(250+350)÷15=40米/秒,且两车的速度比是5∶3,则两车的速度差为10米/秒。



16、单选题 在1至100这100个数中,有既不能被5整除也不能被9整除的数,它们的和是(  )。
A. 1644
B. 1779
C. 3406
D. 3541

参考答案: D
本题解释:
【答案解析】先求出被5或9整除的数的和。1至100中被5整除的数有5,10,15,…,100,和为5+10+15+…+100=(100+5)×20÷2=10501至100中被9整除的数有9,18,…,99,和为9+18+27+…+99=(9+99)×11÷2=594又因为1~100中,45,90这两个数同时被5与9整除,于是所求的和是(1+2+…+100)-(5+10+…+100)-(9+18+…+99)+(45+90)=3541。因此,本题正确答案为D。



17、单选题 每条长200米的三个圆形跑道共同相交于A点,张三、李四、王五三个队员从三个跑道的交点A处同时出发,各取一条跑道练习长跑。张三每小时跑5公里,李四每小时跑7公里,王五每小时跑9公里。问三人第四次在A处相遇时,他们跑了多长时间?(  )
A. 40分钟
B. 48分钟
C. 56分钟
D. 64分钟

参考答案: B
本题解释:
【答案解析】分别求出跑1米所用的时间。60/5000=张三,60/7000=李四,60/9000=王五。张三跑完200米要12/5分钟(2.4),李四需要12/7(1.7)分钟,王五需要4/3(1.3)分钟。张与李圈相差0.7分钟,与王相差1.1分钟,李与王差0.6分钟。得出这样的关系后可以算出张跑到第N圈时(N>4)李和王刚好也在A点,他们2.4分钟时的位移分别为:200m、282m、365m,然后求出圈差的位移82M.165M然后用200分别除以82.165,求出李需要2.44次的2.4分钟就可以再跑200米,王需要1.2次的2.4分钟,然后通分求出共需要多少个2.4分钟就行了。



18、单选题 某市对52种建筑防水卷材产品进行质量抽检,其中有8种产品的低温柔度不合格,10种产品的可溶物含量不达标,9种产品的接缝剪切性能不合格,同时两项不合格的有7种,有1种产品这三项都不合格,则三项全部合格的建筑防水卷材产品有多少种?(  )
A. 37
B. 36
C. 35
D. 34

参考答案: D
本题解释:
正确答案是D 考点 容斥原理问题 解析 本题注意按照不合格得到三个类,进行容斥原理分析。分别设三项全部合格、仅一项不合格的产品有A、B种,根据题意可得B+7+1=52-A,3×1+2×7+1×B=8+10+9,解得A=34,B=10。故正确答案为D。 公式:三集合容斥原理中,将只符合一个条件、只符合两个条件和三个条件都符合的分别看做三个整体,以A、B、C表示三个集合,以X、Y、Z分别表示只符合一个条件、只符合两个条件和三个条件都满足的部分,则有A+B+C=X+2Y+3Z及A∪B∪C=X+Y+Z成立。 标签 整体考虑公式应用



19、单选题 某单位共有A.B.C.三个部门,三部门人员平均年龄分别为38岁,24岁,42岁,A和B两部门人员平均年龄为30岁,B和C两部门人员平均年龄为34岁,该单位全体人员的平均年龄为多少岁?(  )
A. 34
B. 36
C. 35
D. 37

参考答案: C
本题解释:
正确答案是C 考点 平均数问题 解析 A和B部门各自平均年龄为38、24岁,混合后平均年龄为30岁,假定两部门的人数分别为x、y,可得38x+24y=30(x+y),可得x:y=3:4,类似可知B和C两部门的人数之比为4:5。据此分别对A、B、C三部门的人数赋值为3、4、5,则总的平均年龄为(3×38+4×24+5×42)÷(3+4+5)=35(岁)。故正确答案为C。 标签 赋值思想



20、单选题 用6位数字表示日期,如980716表示的是1998年7月16日。如果用这种方法表示2009年的日期,则全年中六个数字都不相同的日期有多少天?(  )
A. 12
B. 29
C. 0
D. 1

参考答案: C
本题解释:
正确答案是C 考点 多位数问题 解析 根据题目条件,显然要知道有多少个符合要求的日期,只需实际构造即可,而在构造的过程中,显然顺序是先安排月份,再安排具体日期。假设2009年AB月CD日,满足要求,它可以简写成“09ABCD”,由于月份当中不能有0,所以不能是01—10月,而11月有两个1,也应该排除,故AB=12;此时原日期可简写成“0912CD”,由于已经出现了0、1、2,所以肯定不是01—30号,而31号里又有1了,排除,因此满足题目要求的日期为0个,故正确答案为C。 标签 构造调整



21、单选题 从一副完整的扑克牌中,至少抽出(  )张牌,才能保证至少6张牌的花色相同。
A. 21
B. 22
C. 23
D. 24

参考答案: C
本题解释:
正确答案是C 考点抽屉原理问题解析一副完整的扑克牌有54张,转变思维,考虑54张牌已经在手中,尽量不满足6张牌花色相同的前提下,最多可以发出几张牌。此时显然是先把每种花色发5张,外加大王、小王,共计22张牌,尚未满足要求,但任意再发出1张就满足要求了,故最多可以发出23张牌,因此至少要发出23张牌才能保证至少6张牌的花色相同,正确答案为C。



22、单选题 一个水库在年降水量不变的情况下,能够维持全市12万人20年的用水量,在该市新迁入3万人之后,该水库只够维持15年的用水量,市政府号召节约用水,希望能将水库的使用寿命提高到30年。那么,该市市民平均需要节约多少比例的水才能实现政府制定的目标?(  )
A. 2/5
B. 2/7
C. 1/3
D. 1/4

参考答案: A
本题解释:
正确答案是A 考点 牛吃草问题 解析 假设原有水量为X,单位时间进水量Y,根据题意可得:X=(12-Y)×20,X=(15-Y)×15,解得X=180,Y=3。假设用30年可供N万人次,则可得,180=(N-3)×30,解得N=9。也即15万人的用水量相当于9万人,因此节水比例为2/5,故正确答案为A。



23、单选题 某剧院有25排座位,后一排比前一排多2个座位,最后一排有70个座位。这个剧院一共有多少个座位?(  )
A. 1104 
B. 1150 
C. 1170 
D. 1280

参考答案: B
本题解释:
B[解析]最后一排有70个坐位,则前面24排每一排少两个,第一排有70-24×2=22,构成一个等差数列,公差为2,首项为22,S25=25×22+(25×24×2)÷2=1150个,选择B。



24、单选题 某种汉堡包每个成本4.5元,售价10.5元。当天卖不完的汉堡包即不再出售,在过去十天里,餐厅每天都会准备200个汉堡包,其中有六天正好卖完,四天各剩余25个。问这十天该餐厅卖汉堡包共赚了多少元?(  )
A. 10850
B. 10950
C. 11050
D. 11350

参考答案: B
本题解释:
正确答案是B 考点 鸡兔同笼问题 解析 先考虑十天全卖出去,然后分析差异,那么共赚了(10.5-4.5)×200×10-10.5×25×4=10950元(没卖出的部分,不仅每个没赚到10.5-4.5=6元,还赔进去成本4.5元),故正确答案为B。 标签 差异分析



25、单选题 某城市9月平均气温为28.5度,如当月最热日和最冷日的平均气温相差不超过10度,则该月平均气温在30度及以上的日子最多有多少天?(  )
A. 24
B. 25
C. 26
D. 27

参考答案: B
本题解释:
正确答案是B 考点 多位数问题 解析 要使30度以上的天数尽可能多,在气温总和一定的情况下,则必然是其他天的温度尽可能低,而由最热日与最冷日的平均气温相差不超过10度,据此构造极端情况,最热天全部为30度,其余天数为最冷天,温度为20度,设平均气温为30度的天数为Y,则可得30Y+20(30-Y)=30×28.5,解得Y=25.5,因此最多有25天。故正确答案为B。 标签 构造调整



26、单选题 甲、乙、丙三个工程队的效率比为6:5:4,现将A、B两项工作量相同的工程交给这三个工程队,甲队负责A工程,乙队负责B工程,丙队参与A工程若干天后转而参与B工程。两项工程同时开工,耗时16天同时结束,问丙队在A工程中参与施工多少天?(  )
A. 6
B. 7
C. 8
D. 9

参考答案: A
本题解释:
正确答案是A 考点 工程问题 解析 解析1:根据题目给出的效率比,直接赋值三个工程队的效率分别为6、5、4,并假设丙队参与A工程Y天,则根据题意可得6×16+4Y=5×16+4(16-Y),解得Y=6。故正确答案为A。 解析2:根据题目中的效率比,直接赋值三个工程队的效率分别为6、5、4,将两工程合在一起看整体,则三个工程队一天的工作量为6+5+4=15,则16天的总工作量为15×16=240,于是A工程的工作量为120,其中甲完成了6×16=96,则丙需要参与(120-96)÷4=6天。故正确答案为A。 秒杀技 秒杀1:将效率比看做份数,甲比乙每天多1份,16天则多16份,而丙一天完成4份,因此完成这16份需要4天,也即丙参与A工程比参与B工程少4天,于是参与A工程的天数为(16-4)÷2=6天。故正确答案为A。 秒杀2:由题意甲效率高于乙效率,因此丙必然在甲中参与天数少于16天的一半,也即答案只在A、B中选择,这两个选项中,优先考虑代入A选项验证,符合条件,故正确答案为A。 标签 直接代入赋值思想



27、单选题 100个孩子按1、2、3……依次报数,从报奇数的人中选取k个孩子,他们所报数字之和为1949,问k最大值为多少?(  )
A. 43
B. 44
C. 45
D. 46

参考答案: A
本题解释:
【答案】A。解析:奇数个奇数的和为奇数,故k的最大值应是奇数,排除B、D;从1开始,45个连续奇数的和是452>1949,排除C,此题答案为A。



28、单选题 超市将99个苹果装进两种包装盒,大包装盒每个装12个苹果,小包装盒每个装5个苹果,共用了十多个盒子刚好装完。问两种包装盒相差多少个?(  )
A. 3
B. 4
C. 7
D. 13

参考答案: D
本题解释:
正确答案是D 考点 不定方程问题 解析 设大盒有x个,小盒有y个,则可得12x+5y=99。因为12x是偶数,99是奇数,所以5y是奇数,y是奇数,则5y的尾数是5,可得12x的尾数是4,则可得x=2或者x=7。当x=2时,y=15,符合题意,此时y-x=13;当x=7时,y=3,x+y=10,不满足共用十多个盒子,排除。故正确答案为D。 标签 数字特性



29、单选题 受原材料涨价影响,某产品的总成本比之前上涨了1/15,而原材料成本在总成本中的比重提高了2.5个百分点,问原材料的价格上涨了多少?(  )
A. 1/9
B. 1/10
C. 1/11
D. 1/12

参考答案: A
本题解释:
正确答案是A 考点 经济利润问题 解析 设原成本为15,则原材料涨价后成本变为16,设原材料价格为x,则有(x+1)/16-x/15=2.5%,解得x=9,则原材料的价格上涨了1/9。故正确答案为A。



30、单选题 书架的某一层上有136本书,且是按照“3本小说、4本教材、5本工具书、7本科书、3本小说、4本教材……”的顺序循环从左至右排列的。问该层最右边的一本是什么书?(  )
A. 小说
B. 教材
C. 工具书
D. 科技书

参考答案: A
本题解释:
正确答案是A 考点 周期问题 解析 循环周期为3+4+5+7=19,136÷19=7……3,即7个周期多3本,则最右边的一本书是小说,故正确答案为A。



31、单选题 有一工作,甲做2天后乙接着做,做了10天后完成了工作。已知乙单独完成需要30天,那么甲单独完成此工作需要(  )天。
A. 3天
B. 1天
C. 10天
D. 2天

参考答案: A
本题解释:
【答案解析】由题可知,甲做2天,相当于乙做20天,则乙做30天的工作,甲3天即可完成。



32、单选题 某船第一次顺流航行21千米又逆流航行4千米,第二天在同一河道中顺流航行12千米,逆流航行7千米,结果两次所用的时间相等。假设船本身速度及水流速度保持不变,则顺水船速与逆水船速之比是(  )。
A. 2.5:1
B. 3:1
C. 3.5:1
D. 4:1

参考答案: B
本题解释:
正确答案是B 考点行程问题解析解析1:设顺水和逆水船速分别为a、b,根据题意又21/a+4/b=12/a+7/b,解得a/b=3,答案为B。 解析2:两次航行时间相等,除去顺水和逆水航行相同的距离,21-12=9千米,7-4=3千米,说明顺水行驶9千米与逆水行驶3千米所用的时间相等,行驶的路程比为9:3=3:1,因此速度比为3:1,故正确答案为B。



33、单选题 某儿童艺术培训中心有5名钢琴教师和6名拉丁舞教师,培训中心将所有的钢琴学员和拉丁舞学员共76人分剐平均地分给各个老师带领,刚好能够分完,且每位老师所带的学生数量都是质数。后来由于学生人数减少,培训中心只保留了4名钢琴教师和3名拉丁舞教师,但每名教师所带的学生数量不变,那么目前培训中心还剩下学员多少人?(  )
A. 36
B. 37
C. 39
D. 41

参考答案: D
本题解释:
正确答案是D 考点 函数最值问题 解析 假定每个钢琴教师带x个学生,每个拉丁舞教师带y个学生,则根据题意有:5x+6y=76。根据此方程,可知x必为偶数,而x与y均为质数,因此x=2,代回可得y=11。于是在学生人数减少后,还剩下学员为4×2+3×11=41个,故正确答案为D。 标签 数字特性



34、单选题 河道赛道场长120米,水流速度为2米/秒,甲船速度为6米/秒,乙船速度为4米/秒。比赛进行两次往返,甲、乙同时从起点出发,先顺水航行,问多少秒后甲、乙船第二次迎面相遇?(  )
A. 48
B. 50
C. 52
D. 54

参考答案: C
本题解释:
【答案】C。解析:甲船顺水速度为2+6=8米/秒,逆水速度为6-2=4米/秒;乙船顺水速度为2+4=6米/秒,逆水速度为4-2=2米/秒。



35、单选题 已知甲、乙两人共有260本书,其中甲的书有13%是专业书,乙的书有12.5%是专业书,问甲有多少本非专业书?(  )
A. 75
B. 87
C. 174
D. 67

参考答案: B
本题解释:
正确答案是B 考点 和差倍比问题 解析 由“甲的书有13%是专业书”可知,甲的专业书=甲的书×13%,所以甲的书是100的倍数,甲的非专业书是87的倍数,排除A、D。由“乙的书有12.5%是专业书”可知,乙的专业书=乙的书×12.5%=乙的书×1/8,所以乙的书是8的倍数。结合选项,若甲的专业书为174本,则甲有200本书,那么乙的书有60本,不是8的倍数,排除C,故正确答案为B。 标签 数字特性



36、单选题 从12时到13时,钟的时针与分针可成直角的机会有(  )。
A. 1次
B. 2次
C. 3次
D. 4次

参考答案: B
本题解释:
【答案解析】一个小时内成直角只有两次,选B。



37、单选题 共有20个玩具交给小王手工制作完成。规定,制作的玩具每合格一个得5元,不合格一个扣2元,未完成的不得不扣。最后小王共收到56元,那么他制作的玩具中,不合格的共有(  )个。
A. 2
B. 3
C. 5
D. 7

参考答案: A
本题解释:
正确答案是A 考点不定方程问题解析设小王制作合格玩具x个,不合格玩具y个,未完成的有z个。则x+y+z=20,5x-2y=56。为不定方程组,将选项代入验证,仅当y=2时,x与z有正整数解。故正确答案为A。



38、单选题 某人银行账户今年底余额减去1500元后,正好比去年底余额减少了25%,去年底余额比前年余额的120%少2000元,则此人银行账户今年底余额一定比前年底余额(  )。
A. 多1000元
B. 少1000元
C. 多10%
D. 少10%

参考答案: D
本题解释:
正确答案是D 考点 和差倍比问题 解析 设前年底余额为m元,则去年为(1.2m-2000)元,今年为[0.75×(1.2m-2000)+1500]元,化简得今年为0.9m元,即今年底余额比前年底减少10%,故正确答案为D。 标签 逆向考虑



39、单选题 大学的小李和b大学的小孙分别从自己学校同时出发,不断往返于a、b两校之间。现已知小李的速度为85米/分钟,小孙的速度为105米/分钟,且经过12分钟后两人第二次相遇。问a、b两校相距多少米?(  )
A. 1140米
B. 980米
C. 840米
D. 760米

参考答案: D
本题解释:
【答案解析】设两校相距s米,则第二次相遇两人的路程和为3s米,有3s=(85+105)×12,解得s=760。



40、单选题 甲、乙两时钟都不正确,甲钟每走24小时,恰好快1分钟;乙钟每走24小时,恰好慢1分钟。假定今天下午三点钟的时候,将甲、乙两钟都调好,指在准确的时间上,任其不停地走下去,问下一次这两只钟都同样指在三点时,要隔多少天?(  )
A. 30
B. 240
C. 480
D. 720

参考答案: D
本题解释:
【答案解析】可以先求出甲钟比标准时钟多转一圈所需天数,标准时钟比乙钟多走一圈所需天数,然后再求二者的最小公倍数。甲钟与标准时钟下一次同时指向三点时,甲钟比标准时钟多转一圈,也就是多走12小时,即60×12分钟,需要60×12÷(61-60)=720÷1=720(天)同样,标准时钟与乙钟下一次同时指向三点时,标准时钟比乙钟多转一圈,需要60×12÷(60-59)=720÷1=720(天)所以,经过720天后,甲、乙两钟同时指在三点。故正确答案为D。



41、单选题 有8种颜色的小球,数量分别为2、3、4、5、6、7、8、9,将它们放进一个袋子里面,问拿到同颜色的球最多需要几次?(  )
A. 6
B. 7
C. 8
D. 9

参考答案: D
本题解释:
【答案解析】解析:"抽屉原理"问题。先从最不利的情况入手,最不利的情况也就使次数最多的情况。即8种小球,每次取一个,且种类不相同(这就是最不利的情况)。然后任取一个,必有重复的,所以是最多取9个。



42、单选题 小明和小强参加同一次考试,如果小明答对的题目占题目总数的3/4,小强答对了27道题,他们两人都答对的题目占题目总数的2/3,那么两人都没有答对的题目共有(  )。
A. 3道
B. 4道
C. 5道
D. 6道

参考答案: D
本题解释:
正确答案是D 考点容斥原理问题解析由“小明答对的题目占题目总数的3/4”,可知题目总数是4的倍数;由“他们两人都答对的题目占题目总数2/3”,可知题目总数是3的倍数。因此,题目总数是12的倍数。小强做对了27题,超过题目总数的2/3,则题目总数是36。根据两集合容斥原理公式得两人都没有答对的题目共有36-(36×3/4+27-36×2/3)=6道,故正确答案为D。



43、单选题 有一食品店某天购进了6箱食品,分别装着饼干和面包,重量分别为8、9、16、20、22、27千克。该店当天只卖出1箱面包,在剩下的5箱中饼干的重量是面包的两倍,则当天食品店购进了(  )千克面包。
A. 44
B. 45
C. 50
D. 52

参考答案: D
本题解释:
正确答案是D 考点和差倍比问题解析由剩下的饼干重量是面包的两倍可知,剩下5箱的总重量一定能被3整除;6箱的总重量是8+9+16+20+22+27=102千克,也能被3整除,因此卖掉的一箱面包的重量也能被3整除,只能是9千克或27千克。若卖掉的一箱面包的重量是9千克,则剩下的面包重(102-9)÷3=31千克,剩余的各箱重量无法组合得到31。所以卖出的面包重27千克,剩余面包重(102-27)÷3=25千克。因此共购进了27+25=52千克面包,故正确答案为D。



44、单选题 把144张卡片平均分成若干盒,每盒在10张到40张之间,则共有(  )种不同的分法。
A. 4
B. 5
C. 6
D. 7

参考答案: B
本题解释:
正确答案是B 考点倍数约数问题解析直接分解数字144=2×2×2×2×3×3,可以组合的在10到40之间的数字,有12、16、18、24、36,共5种可能。故正确答案为B。



45、单选题 小明今年a岁,芳芳明年(a-4)岁,再过c年,他们相差(  )。
A. 4岁
B. c+4岁
C. 5岁
D. c-3岁

参考答案: C
本题解释:
【解析】不管过多少年,两人年龄差永远不会改变;今年芳芳是a-5岁,所以相差5岁,选C。



46、单选题 四人进行篮球传接球练习,要求每人接到球后再传给别人,开始由甲发球,并作为第一次传球。若第五次传球后,球又回到甲手中,则共有传球方式多少种:(  )
A. 60;
B. 65;
C. 70;
D. 75;

参考答案: A
本题解释:
【答案解析】:选A,球第一次与第五次传到甲手中的传法有:C(1,3)×C(1,2)×C(1,2)×C(1,2)×C(1,1)=3×2×2×2×1=24,球第二次与第五次传到甲手中的传法有:C(1,3)×C(1,1)×C(1,3)×C(1,2)×C(1,1)=3×1×3×2×1=18,球第三次与第五次传到甲手中的传法有:C(1,3)×C(1,2)×C(1,1)×C(1,3)×C(1,1)=3×2×1×3×1=18,24+18+18=60种,具体而言:分三步: (1)在传球的过程中,甲没接到球,到第五次才回到甲手中,那有3×2×2×2=24种,第一次传球,甲可以传给其他3个人,第二次传球,不能传给自己,甲也没接到球,那就是只能传给其他2个人,同理,第三次传球和第四次也一样,有乘法原理得一共是3×2×2×2=24种。 (2)因为有甲发球的,所以所以接下来考虑只能是第二次或第三次才有可能回到甲手中,并且第五次球才又回到甲手中。当第二次回到甲手中,而第五次又回到甲手中,故第四次是不能到甲的,只能分给其他2个人,同理可得3×1×3×2=18种。 (3)同理,当第三次球回到甲手中,同理可得3×3×1×2=18种。最后可得24+18+18=60种



47、单选题 小王忘记了朋友手机号码的最后两位数字,只记得倒数第一是奇数,则他最多要拨号多少次才能保证拨对朋友的手机号码?(  )
A. 90
B. 50
C. 45
D. 20

参考答案: B
本题解释:
正确答案是B 考点 排列组合问题 解析 先考虑最后一位,有5种可能;再考虑倒数第二位,有10种可能,因此总的组合方法有5×10=50(种),故正确答案为B。 秒杀技 最后两位数可能情形共有100个,其中奇数的占一半,即50个,故正确答案为B。



48、单选题 三名小孩儿中有一名学龄前儿童(年龄不足6岁),他们的年龄都是质数,且依次相差6岁,他们的年龄之和为多少岁?(  )
A. 21
B. 27
C. 33
D. 39

参考答案: C
本题解释:
【答案解析】6以下的质数有2、3、5,2+6=8不是质数,3+6=9也不是质数。因此最小的那个年龄为5岁,他们的年龄之和为5+11+17=33岁。



49、单选题 小赵,小钱,小孙一起打羽毛球,每局两人比赛,另一人休息,三人约定每一局的输方下一局休息,结束时算了一下,小赵休息了2局,小钱共打了8局,小孙共打了5局,则参加第9局比赛的是(  )。
A. 小钱和小孙
B. 小赵和小钱
C. 小赵和小孙
D. 以上皆有可能

参考答案: B
本题解释:
正确答案是B 考点 统筹规划问题 解析 本题关键在于三个人打羽毛球,一个人休息的时候必然是另外两个人比赛的时候。因此条件“小赵休息了2局”,说明小钱和小孙对战了2局,则两人其余的比赛都是和小赵进行的,于是总的比赛局数为8+5-2=11局。三人比赛中,任何一个人不可能连续休息两场,也即每个人的休息场次只能是间隔的,而11局比赛中小孙打了5局,休息了6局,那么他只能是这11局中的第2、4、6、8、10局中上场。因此第9局比赛中小孙没有上场,也即参加比赛的是小赵和小钱。故正确答案为B。



50、单选题 现有式样、大小完全相同的四张硬纸片,上面分别写了1、2、3、4四个不同的数字,如果不看数字,连续抽取两次,抽后仍旧放还,则两次都抽到2的概率是(  )。
A. 1/2
B. 1/4
C. 1/8
D. 1/16

参考答案: D
本题解释:
【解析】两次都抽到2的概率是1/4*1/4=1/16,选D。



51、单选题 某商店花10000元进了一批商品,按期望获得相当于进价25%的利润来定价,结果只销售了商品总量的30%,为尽快完成资金周转,商店决定打折销售,这样卖完全部商品后,亏本1000元,问商店是按定价打几折销售的?(  )
A. 九折
B. 七五折
C. 六折
D. 四八折

参考答案: C
本题解释:
正确答案是C 考点 经济利润问题 解析 解析1:某商品进该批产品成本为10000元,其中30%是按照相当于进价25%的利润定价,也即3000元的部分是按此利润售出的,此部分回收资金为3000×1.25=3750(元)。根据亏本1000元,可知总共收回资金为9000元,因此剩下的7000元商品实际只售出9000-3750=5250(元),故折扣为5250÷(7000×1.25)=0.6,也即6折。故正确答案为C。 解析2:设一共有10件商品,折扣为Y,则每件商品进价为1000元,利润为250元,可列方程1250×3+1250Y×7=9000,解得Y=0.6,故正确答案为C。 标签 赋值思想



52、单选题 173×173×173-162×162×162=(  )
A. 926183
B. 936185
C. 926187
D. 926189

参考答案: D
本题解释:
正确答案是D 考点计算问题解析根据尾数法,173×173×173尾数为7,162×162×162尾数为8,因此173×173×173-162×162×162尾数为9,故正确答案为D。



53、单选题 六位同学数学考试的平均成绩是92.5分,他们的成绩是互不相同的整数,最高分是99分,最低分是76分,则按分数从高到低居第三位的同学至少得多少分(  )。
A. 93
B. 94
C. 95
D. 96

参考答案: C
本题解释:
C。本题为构造类题目。总分为92.5×6=555,去掉最高分和最低分后还有555-99-76=380。要使第三名分尽可能的低,首先第二名分要尽可能高,即为98分(还余282分)。而第四和第五名的分数要尽量的高,与第三名的分最接近,三者的分为93,94,95。那么最高分至少为95。所以选择C选项。



54、单选题 两个数的差是2345,两数相除的商是8,求这两个数之和(  )。
A. 2353
B. 2896
C. 3015
D. 3456

参考答案: C
本题解释:
C[解析]根据题意,两数相除商是8,则说明被除数是除数的8倍,两数相减结果2345应为除数的7倍,从而求得除数2345÷7=335,被除数为335×8=2680,两数和为2680+335=3015,答案为C。



55、单选题 某商场促销,晚上八点以后全场商品在原来折扣基础上再打9.5折,付款时满400元再减100元,已知某鞋柜全场8.5折,某人晚上九点多去该鞋柜买了一双鞋,花了384.5元,问这双鞋的原价为多少钱?(  )
A. 550
B. 600
C. 650
D. 700

参考答案: B
本题解释:
正确答案是B 考点 经济利润问题 解析 有题意,鞋的原价为(384.5+100)/(0.85×0.95)=484.5/(0.85×0.95),计算量比较大,而只要注意到分子484.5中含有因数3,而因数3没有被分母约掉,所以必然保留到最后结果中,而四个选项中只有B可以被3整除,故正确答案为B。 秒杀技 假设这双鞋的原价是N,则根据题意:N×0.85×0.95=384.5+100,观察此等式也可得到答案。注意到上述等式的右边小数点后仅一位数字,而等式左侧除N外小数点后有四位小数,要使得等式成立,则首先小数点后的数字位数必然一样,因此N要能够将小数点后四位数字变成只有1为数字,显然只有B符合要求。故正确答案为B。 标签 数字特性



56、单选题 甲、乙两人在长30米的泳池内游泳,甲每分钟游37.5米,乙每分钟游52.5米,两人同时分别从泳池的两端出发,触壁后原路返回,如是往返。如果不计转向的时间,则从出发开始计算的1分50秒内两人共相遇了多少次?(  )
A. 2
B. 3
C. 4
D. 5

参考答案: B
本题解释:
正确答案是B 考点 行程问题 解析 解析1:题目的关键在于第一次相遇,两人游过长度之和为泳池长,之后每次相遇,都需要两人再游过两个泳池长。两人一起游一个泳池长,所需时间为30÷(37.5+52.5)×60=20(秒),因此两人分别在20秒时、60秒时、100秒时相遇,共相遇3次。故正确答案为B。 解析2:关键点同解析1。直接求出1分50秒两人合起来游过的距离为(37.5+52.5)×110÷60=165(米),为5.5个泳池长。而两人相遇时都恰是合起来游过距离为奇数个泳池长时,也即两人分别在合游1个、3个、5个泳池长时相遇,故共相遇3次。故正确答案为B。 解析3:套用公式。先看迎面相遇,30×(2N-1)≤(37.5+52.5)×11/6,得N≤3.25,即有3次迎面相遇;再看追上相遇,30×(2N-1)≤(52.5-37.5)×11/6,得N≤23/24,即没有追及相遇。故总的相遇次数为3次。故正确答案为B。 公式:两运动体从两端同时出发,相向而行,不断往返: 第N次迎面相遇,两运动体路程和=全程×(2N-1); 第N次追上相遇,两运动体路程差=全程×(2N-1)。 标签 公式应用



57、单选题 已知2008被一些自然数去除,得到的余数都是10,那么,这些自然数共有(  )。
A. 10
B. 11
C. 12
D. 9

参考答案: B
本题解释:
【答案解析】解析:余10=>说明2008-10=1998都能被这些数整除。同时,1998=2×3×3×3×37,所以,取1个数有37,2,3。---3个。,只取2个数乘积有3×37,2×37,3×3,2×3。---4个。,只取3个数乘积有3×3×37,2×3×37,3×3×3,2×3×3。---4个。只取4个数乘积有3×3×3×37,2×3×3×37,2×3×3×3。---3个。只取5个数乘积有2×3×3×3×37---1个。总共3+4+4+3+1=15,但根据余数小于除数的原理,余数为10,因此所有能除2008且余10的数,都应大于10=>2,3,3×3,2×3被排除。综上,总共有3+4+4+3+1-4=11个。



58、单选题 一条隧道,甲单独挖要20天完成,乙单独挖要10天完成。如果甲先挖1天,然后乙接替甲挖1天,再有甲接替乙挖1天……,两人如此交替工作,那么,挖完这条隧道共用多少?(  )
A. 14
B. 16
C. 15
D. 13

参考答案: A
本题解释:
正确答案是A 考点 工程问题 解析 设工作总量为20,则甲每天挖1,乙每天挖2,因此每轮工作量为3,于是可知前6轮完整完成,共完成工作量18,还剩下2,此时轮到甲继续工作,甲工作一天后还剩下1,还需要乙工作半天,所以一共挖了14天,故正确答案为A。 标签 赋值思想



59、单选题 甲、乙、丙三种货物,如果购买甲3件、乙7件、丙1件需花3.15元,如果购买甲4件、乙10件、丙1件需花4.2元,那么购买甲、乙、丙各1件需花多少钱?(  )
A. 1.05
B. 1.4
C. 1.85
D. 2.1

参考答案: A
本题解释:
正确答案是A 考点 不定方程问题 解析 甲×3+乙×7+丙×1=3.15……① 甲×4+乙×10+丙×1=4.20……② 这是不定方程组,无法解得每个未知数的具体值。换言之,未知数的解存在无穷多个,而题目中四个选项均为确定数值,所以未知数的具体值为多少并不影响甲+乙+丙的值,也即只需要求出其中一组解即可。对此,可以设定最复杂的那个为0,即乙=0,代入后解二元一次方程组,解得甲=1.05,丙=0,即可得甲+乙+丙=1.05。故正确答案为A。 秒杀技 ①×3-②×2可得:甲+乙+丙=3.15×3-4.20×2=1.05。故正确答案为A。



60、单选题 只装有动力桨的船,其单靠人工划船顺流而下的速度是水速的3倍。现该船靠人工划动从A地顺流到达B地,原路返回时只开足动力桨行驶,用时比来时少2/5。问船在静水中开足动力浆行驶的速度是人工划船速度的多少倍?(  )
A. 2
B. 3
C. 4
D. 5

参考答案: B
本题解释:
正确答案是B 考点 行程问题 解析 设水速是1,则顺水速度为3,人工划船静水速度=3-1=2,顺水时间:逆水时间=1:(1-2/5)=5:3,则顺水速度:逆水速度=3:5,所以逆水速度为5,动力浆静水速度=5+1=6,比例为6:2=3:1,故正确答案为B。 标签 赋值思想



61、单选题 甲乙二人协商共同投资,甲从乙处取了15000元,并以两人名义进行了25000元的投资,但由于决策失误,只收回10000元。甲由于过失在己,愿意主动承担2/3的损失。问收回的投资中,乙将分得多少钱?(  )
A. 10000元
B. 9000元
C. 6000元
D. 5000元

参考答案: A
本题解释:
正确答案是A 考点 经济利润问题 解析 共损失了25000-10000=15000元,甲承担15000×2/3=10000元,乙承担剩余的5000元损失,因此乙应该收回:他的投资-他承担的损失=15000-5000=10000元,故正确答案为A。



62、单选题 一杯糖水,第一次加入一定量的水后,糖水的含糖百分比变为15%;第二次又加入同样多的水,糖水的含糖百分变比为12%;第三次再加入同样多的水,糖水的含糖百分比将变为多少?(  )
A. 8%
B. 9%
C. 10%
D. 11%

参考答案: C
本题解释:
【答案】C。解析:设第一次加水后糖水总量为100,糖为100×15%=15,则第二次加水后糖水变为15÷12%=125,所以每次加入的水为125-100=25,故第三次加水后糖水的含糖百分比为15÷(125+25)=10%。



63、单选题 现有50名学生都做物理、化学实验,如果物理实验做正确的有40人,化学实验做正确的有31人,两种实验都做错的有4人,则两种实验都做对的有(  )。
A. 27人
B. 25人
C. 19人
D. 10

参考答案: B
本题解释:
【答案解析】容斥问题,40+31-X=50-4,所以X=25,选B。



64、单选题 某单位2011年招聘了65名毕业生,拟分配到该单位的7个不同部门,假设行政部门分得的毕业生人数比其他部门都多,问行政部门分得的毕业生人数至少为多少名?(  )
A. 10
B. 11
C. 12
D. 13

参考答案: B
本题解释:
正确答案是B 考点 趣味数学问题 解析 65÷7=9余2,即平均分配给7个不同部门还剩余2名毕业生,已知行政部门毕业生毕业生最多,所以只需将剩余的2名毕业生分配给行政部门即可(如果只分配1名,那么其他部门也会出现不少于10人的情况),可得9+2=11,故正确答案为B。



65、单选题 从1、2、3、4、5、6、7、8、9中任意选三个数,使他们的和为偶数,则有多少种选法?(  )
A. 40
B. 41
C. 44
D. 46

参考答案: C
本题解释:
【答案解析】:选C,形成偶数的情况:奇数+奇数+偶数=偶数;偶数+偶数+偶数=偶数=>其中,奇数+奇数+偶数=偶数=>C(2,5)[5个奇数取2个的种类]×C(1,4)[4个偶数取1个的种类]=10×4=40,偶数+偶数+偶数=偶数=>C(3,4)=4[4个偶数中选出一个不要],综上,总共4+40=44



66、单选题 桌面上有两个半径分别为2厘米和40厘米的圆环,让小圆环沿着大圆环外边缘滚动一圈,则小圆环滚动的圈数是:(  )
A. 10
B. 20
C. 40
D. 80

参考答案: B
本题解释:
【答案解析】圆的周长之比等于半径之比,所以大圆的周长是小圆的20倍,即小圆需要滚动20圈。



67、单选题 有20名工人修筑一段公路,计划15天完成。动工3天后抽出5人去其他工地,其余人继续修路。如果每人工作效率不变,那么修完这段公路实际用(  )
A. 19天
B. 18天
C. 17天
D. 16天

参考答案: A
本题解释:
【答案】A。解析:5人12天完成的工作量分配给15人需要5×12÷15=4天完成,所以修完这段公路实际用15+4=19天。



68、单选题 某河段中的沉积河沙可供80人连续开采6个月或60人连续开采10个月。如果要保证该河段河沙不被开采枯竭,问最多可供多少人进行连续不间断的开采?(假定该河段河沙沉积的速度相对稳定)(  )
A. 25
B. 30
C. 35
D. 40

参考答案: B
本题解释:
正确答案是B 考点 牛吃草问题 解析 设河沙初始量为M,每月沉积量为N。则有: M=(80-N)×6=(60-N)×10,解得N=30,即每个月的沉积量可供30人开采; 可知当开采人数为30时,才能保证连续不间断的开采,故正确答案为B。



69、单选题 从一楼走到五楼,爬完一层休息30秒,一共要210秒,那么从一楼走到7楼,需要多少秒(  )
A. 318
B. 294
C. 330
D. 360

参考答案: C
本题解释:
C【解析】从一点走到五楼,休息了三次,那么每爬上一次需要的时间为(210-30×3)÷(5-1)=30秒,故从一楼走到七楼需要30×(7-1)+30×(7-2)=330秒。



70、单选题 为节约用水,某市决定用水收费实行超额超收,标准用水量以内每吨2.5元,超过标准的部分加倍收费。某用户某月用水15吨,交水费62.5元,若该用户下个月用水12吨,则应交水费多少钱?(  )
A. 42.5元
B. 47.5元
C. 50元
D. 55元

参考答案: B
本题解释:
正确答案是B 考点 鸡兔同笼问题 解析 解析1:先将15吨全部看成超出的部分,则按照每吨5元收费,共计收费75元,而实际交水费62.5元,少交12.5元。这是因为标准量以内每吨2.5元,比整体看做超出部分计价少交2.5元,因此标准用水量为5吨。因此12吨应交水费为5×2.5+7×5=47.5元。故正确答案为B。 解析2:设标准用水量上限为A吨,则有2.5A+5×(15-A)=62.5,解得A=5。用水12吨,应交水费2.5×5+5×(12-5)=47.5元。故正确答案为B。 秒杀技 将12吨用水看成标准量以内,应交水费为12×2.5=30元,但四个选项中没有此值,这说明12吨是超过标准用水量。那么15吨必然也是超过标准用水量,要计算12吨应交的水费,只需从15吨所交62.5元中扣除多超出的3吨的价钱即15元即可,也即为47.5元。故正确答案为B。 标签 差异分析



71、单选题 4只小鸟飞入4个不同的笼子里去,每只小鸟都有自己的一个笼子(不同的鸟,笼子也不相同),每个笼子只能飞进一只鸟。若都不飞进自己的笼子里去,有多少种不同的飞法?(  )。
A. 7
B. 8
C. 9
D. 10

参考答案: C
本题解释:
C。本题属于计数问题。本题是排列组合中的错位问题,根据对错位问题数字的记忆,答案应为9种。所以选择C选项。 计算过程:设四只小鸟为1,2,3,4,则1有3个笼可选择,不妨假设1进了2号笼,则2也有3个笼可选择,不妨设2进了3号笼,则剩下鸟3、4和笼1、4只有一种选择。所以一共有3×3=9种。



72、单选题 某人在公共汽车上发现一个小偷向相反方向步行,10秒钟后他下车去追小偷,如果他的速度比小偷快一倍,比汽车慢4/5,则此人追上小偷需要(  )。
A. 20秒
B. 50秒
C. 95秒
D. 110秒

参考答案: D
本题解释:
正确答案是D 考点行程问题解析根据题中三者速度的比例关系,设此人、小偷和汽车的速度分别为2、1、10,10秒钟后此人下车时,与小偷的距离为10×(10+1)=110,与小偷的速度差为1,因此所需时间为110秒,故正确答案为D。



73、单选题 一篇文章,现有甲、乙、丙三人,如果由甲、乙两人合作翻译,需要10小时完成,如果由乙、丙两人合作翻译,需要12小时完成。现在先由甲、丙两人合作翻译4小时,剩下的再由乙单独去翻译,需要12小时才能完成,则,这篇文章如果全部由乙单独翻译,要多少个小时完成?(  )
A. 15
B. 18
C. 20
D. 25

参考答案: A
本题解释:
正确答案是A 考点工程问题解析设总量为1,由题意知甲乙合作的效率为1/10,乙丙合作的效率为1/12。题目给出完成该项工程的过程是甲丙先合作4个小时,乙单独翻译12个小时。在这个工作过程中,甲完成了4个小时的工作量,已完成了12个小时的工作量,丙完成了4个小时的工作量,保持此总量不变,将乙的工作拆分为三个独立的4个小时,重新为如下工作过程:甲乙先合作4个小时,乙丙再合作4个小时,最后乙单独做4个小时,仍然可以保证工程完成。于是假设乙的效率为y,可知4×1/10+4×1/12+4y=1,解得y=1/15,于是乙单独完成需要15个小时,故正确答案为A。



74、单选题 一个班的学生排队,如果排成3人一排的队列,则比2人一排的队列少8排;如果排成4人一排的队列,则比3人一排的队列少5排,这个班的学生如果按5人一排来排队的话,队列有多少排?(  )
A. 9
B. 10
C. 11
D. 12

参考答案: C
本题解释:
正确答案是C 考点 不定方程问题 解析 注意到几人一排时,未必恰好整除,而在不整除的时候剩余人数仍构成一排,据此可知本题若列方程将不能得到一个确切方程,故解题方法为代入法。 将A代入,则学生人数在41到45之间,择其最大者进行验证。45人满足排成3人一排的队列比排成2人一排的队列少8排,但排成4人一排的队列比3人一排的队列少3排,故45人不正确。并且此时排成4人一排的队列比3人一排的队列所少的排数低于题中给出的5,而要想排数差值增大,则需学生人数更多,因此41到45之间的数字肯定都不符合要求,故A不正确。(这也是为什么要择所得数字中最大者验证。) 将B代入,则学生人数在46到50之间,择其最大者进行验证。学生人数为50人时,排成4人一排的队列比3人一排的队列少4排,故不符合,且类似上面分析可知B选项不正确。 将C选项代入,则学生人数在51到55之间,择其最大者进行验证。学生人数为55人时,排成4人一排的队列比3人一排的队列少5排,符合要求,而其排成3人一排的队列比2人一排的队列少9排,因此学生人数应少于55人。依次验证其余可知学生人数为52人满足要求。故正确答案为C。



75、单选题 对某单位的100名员工进行调查,结果发现他们喜欢看球赛和电影、戏剧。其中58人喜欢看球赛,38人喜欢看戏剧,52人喜欢看电影,既喜欢看球赛又喜欢看戏剧的有18人,既喜欢看电影又喜欢看戏剧的有16人,三种都喜欢看的有12人,则只喜欢看电影的有(  )。
A. 22人
B. 28人
C. 30人
D. 36人

参考答案: A
本题解释:
【答案解析】本题可以使用阴影覆盖法,即100-(40+18+20)=22(人),故远A项。



76、单选题 某次考试100道选择题,每做对一题得1.5分,不做或做错一题扣1分,小李共得100分,那么他答错多少题(  )
A. 20
B. 25
C. 30
D. 80

参考答案: A
本题解释:
A【解析】不做或做错的题目为(100×1.5-100)÷(1.5+1)=20。



77、单选题 100个孩子按1、2、3…依次报数,从报奇数的人中选取k个孩子,他们所报数字之和为1949,问k最大值为多少?(  )
A. 43
B. 44
C. 45
D. 46

参考答案: A
本题解释:
【答案】A。解析:奇数个奇数的和为奇数,故k的最大值应是奇数,排除B、D;从1开始,45个连续奇数的和是452>1949,排除C,此题答案为A。



78、单选题 相同表面积的四面体,六面体,正十二面体以及正二十面体,其中体积最大的是(  )。
A. 四面体
B. 六面体
C. 正十二面体
D. 正二十面体

参考答案: D
本题解释:
正确答案是D 考点 几何问题 解析 根据等量最值原理,同样表面积的空间几何图形,越接近于球,体积越大。而四个选项中,正二十面体最接近于球,所以体积最大。故正确答案为D。



79、单选题 从12时到13时,钟的时针与分针可成直角的机会有多少次?(  )
A. 1
B. 2
C. 3
D. 4

参考答案: B
本题解释:
【答案解析】:选B,时针和分针在12点时从同一位置出发,按照规律,分针转过360度,时针转过30度,即分针转过6度(一分钟),时针转过0.5度,若一个小时内时针和分针之间相隔90度,则有方程:6x=0.5x+90和6x=0.5x+270成立,分别解得x的值就可以得出当前的时间,应该是12点180/11分(约为16分左右)和12点540/11分(约为50分左右),可得为两次。



80、单选题 编一本书的书页,用了270个数字(重复的也算,如页码115用了2个1和1个5,共3个数字),问这本书一共有多少页?(  )
A. 117
B. 126
C. 127
D. 189

参考答案: B
本题解释:
正确答案是B 考点 多位数问题 解析 结合四个选项都是三位数即可得知最终的页码一定是100多,故此目标是计算从第1页到第99页用掉的数字,然后再逼近目标。从第1页到第9页,用掉数字9个;从第10页到第99页,用掉数字共90×2=180个,还剩余数字270-9-180=81个,将全部用于三位数页码的构造,故能编三位数页码为81÷3=27页。因为三位数页码是从第100页开始,故第27页三位数页码是该书的第126页。故正确答案为B。



81、单选题 一行10个人来到电影院看电影,前9人入坐之后,第十人无论怎么坐都至少有一个人与他相邻,那么电影院这排最多有多少座位?(  )。
A. 10
B. 19
C. 26
D. 27

参考答案: D
本题解释:
D。本题可采用极端法。既然要第十人旁边一定有人,那么最极端的排法就是将座位按每3个分成一组,每组最中间的座位坐人,故9人最多有9*3=27,所以选择D选项。



82、单选题 某商场有7箱饼干,每箱装的包数相同,如果从每箱里拿出25包饼干,那么,7个箱里剩下的饼干包数相当于原来的2箱饼干,原来每箱饼干有多少包?(  )。
A. 25
B. 30
C. 50
D. 35

参考答案: D
本题解释:
【解析】比较简单,可以直接列方程:7(X-25)=2X,所以X=35,选D。



83、单选题 某市现有70万人口,如果5年后城镇人口增加4%,农村人口增加5.4%,则全市人口将增加4.8%,那么这个市现有城镇人口(  )。
A. 30万
B. 31.2万
C. 40万
D. 41.6万

参考答案: A
本题解释:
【答案解析】可以设现有城镇人口为X万,那么农村人口为70-X,得出等式4%×X+5.4%×(70-X)=70×4.8%,解出结果为30。



84、单选题 有300名求职者参加高端人才专场招聘会,其中软件设计类、市场营销类、财务管理类和人力资源管理类分别有100、80、70和50人。问至少有多少人找到工作,才能保证一定有70名找到工作的人专业相同?(  )
A. 71
B. 119
C. 258
D. 277

参考答案: C
本题解释:
正确答案是C 考点 抽屉原理问题 解析 考虑对这些人进行分配,在使得每个专业人数不足70的情况下尽可能的增加就业人数,则四类专业可就业的人数分别为69、69、69、50,总和为257人。此时再多1人,则必然有一个专业达到70人,因此所求最少人数为258人,故正确答案为C。 标签 构造调整



85、单选题 一个五位数,左边三位数是右边两位数的5倍,如果把右边的两位数移到前面,则所得新的五位数要比原来的五位数的2倍还多75,则原来的五位数是(  )。
A. 12525
B. 13527
C. 17535
D. 22545

参考答案: A
本题解释:
【答案解析】直接代入,选A。



86、单选题 某成衣厂对9名缝纫工进行技术评比,9名工人的得分一给好成等差数列,9人的平均得分是86分,前5名工人的得分之和是460分,那么前7名工人的得分之和是多少?(  )
A. 602
B. 623
C. 627
D. 631

参考答案: B
本题解释:
正确答案是B 考点 平均数问题 解析 由于前5名工人的得分之和是460分,则第三名工人的得分=460÷5=92(分),9人的平均得分是86分,即第五名工人的得分为86分,所以第四名的得分为(92+86)÷2=89(分),所以前7名的总分为89×7=623(分),故正确答案为B。 注释:等差数列的平均数等于其中位数的值。



87、单选题 某区要从10位候选人中投票选举人大代表,现规定每位选举人必须从这10位中任选两位投票,问至少要有多少位选举人参加投票,才能保证有不少于10位选举人投了相同两位候选人的票?(  )
A. 382位
B. 406位
C. 451位
D. 516位

参考答案: B
本题解释:
【答案】B。解析:从10位候选人中选2人共有种票,则每种票有9张相同时需要×9=405个人投票,那么只需要再加一人可以保证有不少于10人投了相同两位候选人的票。



88、单选题 一只装有动力桨的船,其单靠人工划船顺流而下的速度是水速的3倍。现该船靠人工划动从A地顺流到达B地,原路返回时只开足动力桨行驶,用时比来时少2/5。问船在静水中开足动力浆行驶的速度是人工划船速度的多少倍?()
A. 2
B. 3
C. 4
D. 5

参考答案: B
本题解释:
B[解析]设水速是1,则顺水速度为3,人工划船静水速度=3-1=2,顺水时间:逆水时间=1: (1-2/5)=5:3,则顺水速度:逆水速度=3:5,所以逆水速度为5,动力桨静水速度=5+1=6,比例为6:2=3:1



89、单选题 同时打开游泳池的A,B两个进水管,加满水需1小时30分钟,且A管比B管多进水180立方米,若单独打开A管,加满水需2小时40分钟,则B管每分钟进水多少立方米?(  )
A. 6
B. 7
C. 8
D. 9

参考答案: B
本题解释:
正确答案是B 考点 工程问题 解析 解析1:设B管每分钟进水x立方米,则A管每分钟进水为x+2立方米,根据题意可得(2x+2)×90=(x+2)×160,解得x=7。故正确答案为B。 解析2:由A、B两管合作加水90分钟,加满水池且A管比B管多进水180立方米,首先可知A管比B管每分钟多进水2立方米,其次可知若A管自己单独灌水90×2=180(分钟),则也可灌满水池,且多灌180立方米(此处原理即用A代替B工作,看差异情况),而题中又告知A管单独工作只需160分钟即可灌满水,因此可知多灌的180立方米用时为180-160=20(分钟),因此A管的效率为每分钟9立方米,于是可知B管每分钟进水7立方米。故正确答案为B。 标签 差异分析



90、单选题 张先生向商店订购某种商品80件,每件定价100元。张先生向商店经理说:“如果你肯减价,每件减1元,我就多订购四件。”商店经理算了一下,如果减价5%,由于张先生多订购,仍可得与原来一样多的利润。则这种商品每件的成本是(  )。
A. 75元
B. 80元
C. 85元
D. 90元

参考答案: A
本题解释:
正确答案是A 考点经济利润问题解析设该商品每件成本x元,则未减价前每件利润为(100-x)元,减价5%后每件利润为(95-x)元,订购数量为(80+5×4)件,根据题意有80×(100-x)=(95-x)×(80+5×4),解得x=75,故正确答案为A。



91、单选题 某公司计划购买一批灯泡,11W的普通节能灯泡耗电110度/万小时,单价20元;5W的LED灯泡耗电50度/万小时,单价110元。若两种灯泡使用寿命均为5000小时,每度电价格为0.5元。则每万小时LED灯泡的总使用成本是普通节能灯泡的多少倍?(  )
A. 1.23
B. 1.80
C. 1.93
D. 2.58

参考答案: D
本题解释:
【答案】D。解析:每万小时普通节能灯泡使用成本为20×2+110×0.5=95元;每万小时LED灯泡使用成本为110×2+50×0.5=245元。所求即为245÷95=2.58。



92、单选题 有a,b,c,d四条直线,依次在a线上写1,在b线上写2,在c线上写3,在d线上写4,然后在a线上写5,在b线,c线和d线上写数字6,7,8……按这样的周期循环下去问数2005在哪条线上?(  )
A. a线
B. b线
C. C线
D. d线

参考答案: A
本题解释:
【答案解析】等于2005个数,4个一循环,所以2005/4=501余1,所以选A。



93、单选题 某原料供应商对购买其原料的顾客实行如下优惠措施:①一次购买金额不超过1万元,不予优惠;②一次购买金额超过1万元,但不超过3万元,给九折优惠;③一次购买金额超过3万元,其中3万元九折优惠,超过3万元部分八折优惠。某厂因库容原因,第一次在该供应商处购买原料付款7800元,第二次购买付款26100元,如果他一次购买同样数量的原料,可以少付:(  )
A. 1460元
B. 1540元
C. 3780元
D. 4360元

参考答案: A
本题解释:
【解析】A。第一次购买原料付款7800元,原料的总价值应为7800元,第二次购买时付款26100元,原料的总价值应为26100÷0.9=29000元。如果要将两次购买变成一次购买,则总价值应为7800+29000=36800元,而应该付款额为30000×0.9+6800×0.8=32440元,一次性购买比分两次购买可以节约7800+26100-32440=1460元。



94、单选题 现有200根相同的钢管,把它们堆放成正三角形垛,使剩余的钢管尽可能的少,那么乘余的钢管有(  )。
A. 9
B. 10
C. 11
D. 12

参考答案: B
本题解释:
【解析】20层的情况是1-20的和,一共是210,超出了,所以减去最后一层20剩下190,所以剩余的钢管有200-190=10根。



95、单选题 乘火车从甲城到乙城,1998年初需要19.5小时,1998年火车第一次提速30%,1999年第二次提速25%,2000年第三次提速20%。经过三次提速后,从甲城到乙城乘火车只需要(  )。
A. 8.19小时
B. 10小时
C. 14.63小时
D. 15小时

参考答案: B
本题解释:
正确答案是B 考点行程问题解析设1998年火车的速度为v,三次提速后所需时间为t,三次提速后速度为(1+30%)×(1+25%)×(1+20%)vt=19.5v,解得t=10。因此正确答案为B。



96、单选题 商场的自动扶梯以匀速由下往上行驶,两个孩子在行驶的扶梯上上下走动,女孩由下往上走,男孩由上往下走,结果女孩走了40级到达楼上,男孩走了80级到达楼下。如果男孩单位时间内走的扶梯级数是女孩的2倍。则当该扶梯静止时,可看到的扶梯梯级有(  )。
A. 40级
B. 50级
C. 60级
D. 70级

参考答案: C
本题解释:
正确答案是C 考点行程问题解析解析1:设女孩的速度为x,男孩为2x,扶梯的速度为y,根据题意可知男孩和女孩所用的时间相同,有x+y=2x-y,得x:y=2,即女孩的速度为扶梯的2倍,因此当女孩走了40级时扶梯走了20级,扶梯静止时有60级。因此正确答案为C。 解析2:因为男孩单位时间内走的扶梯级数是女孩的2倍,所以男孩走80级的时间和女孩走40级的时间相等,由此可知他们两个乘电梯的时间相同,则电梯运行距离也相等,也即有如下两式: 对于男孩:电梯长度=80-电梯运行距离; 对于女孩:电梯长度=40+电梯运行距离。 由此可知电梯长度为60,故正确答案为C。



97、单选题 某汽车厂离生产甲、乙、丙三种车型,其中乙型产量的3倍与丙型产量的6倍之和等于甲型产量的4倍,甲型产量与乙型的2倍之和等于丙型产量的7倍。则甲、乙、丙三型产量之比为(  )。
A. 5:4:3
B. 4:3:2
C. 4:2:1
D. 3:2:1

参考答案: D
本题解释:
正确答案是D 考点 和差倍比问题 解析 设甲的产量为x,乙的产量为y,丙的产量为z。则可得如下: 3y+6z=4x,x+2y=7z,两式相加可得3x+z=5y,直接带入选项,只有D符合,故正确答案为D。 秒杀技 得到3y+6z=4x后,观察该式,可知x应为3的倍数,只有D符合。 标签 直接代入



98、单选题 某人在雅虎上申请了一个邮箱,邮箱密码是由0至9中任意4个数字组成,他任意输入4个数字,输入正确密码的概率是(  )。
A. 10的3次方
B. 10的4次方
C. 10的5次方
D. 10的6次方

参考答案: B
本题解释:
B[解析]正确的密码只有一个,这10个数字的组合共有10的4次方个,所以答案是B。



99、单选题 某社团共有46人,其中36人爱好戏剧,30人爱好体育,38人爱好写作,40人爱好收藏,问这个社团至少有(  )人以上四项活动都喜欢。
A. 5
B. 6
C. 7
D. 8

参考答案: B
本题解释:
【答案解析】根据题意可知,不爱好戏剧的有46-36=10人,不爱好体育的有46-30=16人,不爱好写作的有46-38=8人,不爱好收藏的有46-40=6人。要使四项活动都喜欢的人最少,则应使不爱好这四项活动的人最多,即使不爱好这四项活动的人均不重复,所以至少有46-(10+16+8+6)=6人四项活动都喜欢。所以正确答案为B项。



100、单选题 篮球规则中得分有3分,2分,1分,若在一次比赛中,队员A一人得了13分,那么他的得分组合共(  )种。
A. 18 
B. 19 
C. 20 
D. 21

参考答案: D
本题解释:
D[解析]当A的3分分别拿到4,3,2,1,0次的时候,对应的组合数分别是1,3,4,6,7,所以A的得分组合共有1+3+4+6+7=21种,选D。




首页 上页 1 2 下页 尾页 2/2/2
微信搜索关注"91考试网"公众号,领30元,获取公务员事业编教师考试资料40G
【省市县地区导航】【考试题库导航】
 ★ 银行招聘考试省级导航 ★ 
全国 A安徽 B北京 C重庆 F福建 G广东 广西 甘肃 贵州 H河南 河北 湖南 湖北 黑龙江 海南 J江苏 江西 吉林 L辽宁 N内蒙古 宁夏 Q青海 S山东 山西 陕西 四川 上海 T天津 X新疆 西藏 Y云南 Z浙江
 ★ 银行招聘考试 ★ 

电脑版  |  手机版  |  返回顶部