时间:2017-01-03 13:32:39
1、单选题 有甲、乙两只盒子,甲盒装有2个黑球、4个红球,乙盒装有4个黑球、3个红球,若从甲、乙两盒中各任取两球交换后,甲盒中恰有4个红球的概率为多少?_____
A: B:
C:
D:
参考答案: D
本题解释:参考答案
题目详解:事件“甲盒中恰有4个红球”发生:说明从甲盒任取两球的结果与从乙盒任取两球的结果相同;甲盒任取两个球:有
2、单选题 用一个平面将一个边长为1的正四面体切分为两个完全相同的部分,则切面的最大面积为_____。A: A
B: B
C: C
D: D
参考答案: B
本题解释:正确答案是B考点几何问题解析
3、单选题 某单位有52人投票,从甲、乙、丙三人中选出一名先进工作者。在计票过程中的某时刻,甲得17票,乙得16票,丙得11票,如果规定得票比其他两人都多的候选人才能当选。那么甲要确保当选,最少要再得票_____。
A: 1张
B: 2张
C: 3张
D: 4张
参考答案: D
本题解释:正确答案是D考点抽屉原理问题解析解析1:整体考虑,乙对甲威胁最大,甲乙共可以分52-11=41张选票,甲乙均得到20张时,甲仍然保证不了能当选,再得剩下的1张选票,即甲得到21张选票时,保证当选,所以还需要21-17=4张,选D。解析2:还剩下52-17-16-11=8张票。甲如果要确保当选,则考虑最差情况,剩下的票丙一票不拿,那么只有甲乙分配剩下的票,甲至少要拿8÷2=4张才能保证当选,故正确答案为D。解析3:已统计选票17+16+11=44,剩余52-44=8票。这里对甲最大的威胁是乙,设甲再得票x,乙再得票(8-x),令17+x=16+(8-x),由此推出,x=3.5,x最小是3.5,满足条件的整数取4,故正确答案为D。
4、单选题 有一批长度分别为3、4、5、6和7厘米的细木条,它们的数量足够多,从中适当选取3根木条作为三角形的三条边,可能围成多少个不同的三角形?_____
A: 25个
B: 28个
C: 30个
D: 32个
参考答案: D
本题解释:正确答案是D考点几何问题解析
5、单选题 为保证一重大项目机械产品的可靠性,试验小组需要对其进行连续测试。测试人员每隔5小时观察一次,当观察第120次时,手表的时针正好指向10。问观察第几次时,手表的时针第一次与分针呈60度角?_____
A: 2
B: 4
C: 6
D: 8
参考答案: D
本题解释:正确答案是D[解析] 从第1次观察到第120次观察,共计119个周期。假定再有第121次观察,此时时针指向下午3点,而从第1次观察到第121次观察,共计120个周期,因此经过的时间恰好为12的整数倍,故第1次时针指向也为下午3点。要使得手表的时针与分针呈60°夹角,则意味着时针指向2点或10点。从3点出发,每个周期加5个小时,可知在经过7个周期后第一次实现这一目标,故在第8次观察时,手表的时针与分针第一次呈60°角。