★ 公务员考试行测题库 ★ 
 ★ 压中真题已成为一种习惯 ★ 
系列重要讲话 “十三五”规划 政府工作报告 中央一号文件 十八大报告 中国特色社会主义理论 马克思主义哲学 马克思主义政治经济学 毛泽东思想 宪法 刑法 民法 行政法 诉讼法 合同法 婚姻法 继承法 物权法 人文常识 科技常识 常识判断 定义判断 类比推理 历史常识 逻辑判断 片段阅读 数学运算 图形推理 病句判断 选词填空 主旨概括 资料分析 时事政治

公务员行测-数学运算技巧(二)

时间:2016-06-16 22:22:11

微信搜索关注"91考试网"公众号,领30元,获取事业编教师公务员等考试资料40G

1、袋子里红球与白球的数量之比为19∶13,放入若干个红球后,红球与白球的数量之比变为5∶3,再放入若干个白球后,红球与白球的数量之比为13∶11,已知放入的红球比白球少80个。那么原来袋子里共有多少个球?_____
A: 650 B: 720 C: 840 D: 960
参考答案: D 本题解释:



2、有100人参加运动会的三个比赛项目,每人至少参加一项,其中未参加跳远的有50人,未参加跳高的有60人,未参加赛跑的有70人。问至少有多少人参加了不止一个项目?_____
A: 7 B: 10 C: 15 D: 20
参考答案: B 本题解释:【解析】B.最值问题。由题意,参加跳远的人数为50人,参加跳高的为40人,参加赛跑的为30人;即参加项目的人次为120人次;故欲使参加不止一项的人数最少,则需要使只参加一项的人数最多为x,参加3项的人数为y;故x+3y=120,x+y=100,解得y=10



3、某汽车厂离生产甲、乙、丙三种车型,其中乙型产量的3倍与丙型产量的6倍之和等于甲型产量的4倍,甲型产量与乙型的2倍之和等于丙型产量的7倍。则甲、乙、丙三型产量之比为_____。
A: 5:4:3B: 4:3:2C: 4:2:1D: 3:2:1
参考答案: D 本题解释:正确答案是D考点和差倍比问题解析设甲的产量为x,乙的产量为y,丙的产量为z。则可得如下:3y+6z=4x,x+2y=7z,两式相加可得3x+z=5y,直接带入选项,只有D符合,故正确答案为D。秒杀技得到3y+6z=4x后,观察该式,可知x应为3的倍数,只有D符合。标签直接代入



4、某服装厂要生产一批某种型号的学生服,已知每3米长的某种面料可做上衣2件。或做裤子3条,计划用300米长的这种布料生产学生服,应用多少米布料产生上衣,才能恰好配套?_____
A: 120B: 150C: 180D: 210
参考答案: C 本题解释:答案:C【解析】3米长可做上衣2件,或裤子3条,则300米布料可做上衣200件,或裤子300条,即如需成套,则上衣和裤子的数量必须同样多,那么上衣所用布料当为3/5,即180米,裤子为120米,共可做120套服装。所以答案为选项C。



5、某次抽奖活动在三个箱子中均放有红、黄、一绿、蓝、紫、橙、白、黑8种颜色的球各一个,奖励规则如下:从三个箱子中分别摸出一个球,摸出的3个球均为红球的得一等奖,摸出的3个球中至少有一个绿球的得二等奖,摸出的3个球均为彩色球(黑、白除外)的得三等奖。问不中奖的概率是多少?_____
A: 在 0~25%之间B: 在25~50%之间C: 在50~75%之间D: 在75~100%之间
参考答案: C 本题解释:C。



6、一家公司2006年的月累计利润y(单位:万元)与月份x的变化关系如下表所示:则该公司2006年的月平均利润是_____万元。
A: 15B: 16C: 21D: 30
参考答案: C 本题解释:正确答案是C解析把x=1和x=2代入可得1+b+c=21,4+2b+c=32,联立解得b=8,c=12。当x=12时,y=12×12+8×12+12=252万元,月平均利润为252÷12=21万元,故正确答案为C。考点经济利润问题



7、足球比赛的计分规则是:胜一场得3分,平一场得1分,负一场得0分,如果某国家足球队共打了28场比赛,其中负6场,共得40分,那么这个队胜了多少场?_____
A: 8B: 10C: 12D: 9
参考答案: D 本题解释:正确答案是D考点鸡兔同笼问题解析解析1:这是鸡兔同笼问题的推广得得失问题,胜的场数和平的场数共有28-6=22(场),根据得失问题公式,则胜的场数为(40-22)÷(3-1)=9(场),故选D选项。注:比赛得失问题公式,﹙总的得分-平场数×平场得分)÷(胜场得分-平场得分)=胜的场数,(只有胜和平场时);(总的得分-平的场数×平场得分+输的场数×输场扣分)÷(胜场得分-平场得分+输场扣分)=胜的场数,(有胜、平、输场时)。解析2:胜的场数和平的场数共有28-6=22(场),设胜的胜数为a,3×a+1×(22-a)=40,a=9(场),故正确答案为D。标签公式应用



8、已知两个数a、b的积是,和是2,且a>b,则的值是:_____
A: 3B: C: 4D:
参考答案: A 本题解释:参考答案:A题目详解:解法一:由题意可知:,解得:则:由于,所以:,所以解法二:ab的积乘以得到a的平方,看下答案,什么数乘以得到的结果是可以开平方的。判断得到是A是a=的平方,省略了计算,也可验证,符合题目要求。(该解析由用户“小爱行测加油”于2011-03-0613:24:15贡献,感谢感谢!)考查点:数量关系>数学运算>计算问题之算式计算>算式等式问题



9、一段路程分为上坡、平路、下坡,三段路程长之比依次是1∶2∶3。小龙走各段路程所用时间之比依次是4∶5∶6。已知他上坡时速度为每小时3千米,路程全长是50千米,小龙走完全程用多少小时?_____
A: 10(5/12)B: 12C: 14(1/12)D: 10
参考答案: A 本题解释:A解析:上坡、平路、下坡的速度之比是:14∶25∶36=5∶8∶10平路速度为:3×8/5=24/5(千米/小时)下坡速度为:3×10/5=6(千米/小时)上坡路程为:50×1/(1+2+3)=50/6=25/3(千米)平路路程为:50×2/(1+2+3)=50/3(千米)下坡路程为:50×3/(1+2+3)=25(千米)小龙走完全程用的时间为:25/3÷3+50/3÷24/5+25÷6=10(5/12)(小时)故本题选A。



10、加油站有150吨汽油和102吨柴油,每天销售12吨汽油和7吨柴油。问多少天后,剩下的柴油是剩下的汽油的3倍?_____
A: 9B: 10C: 11D: 12
参考答案: D 本题解释:【答案】D。解析:假设x天,汽油还剩150-12x,柴油还剩102-7x,102-7x=3(150-12x),解得x=12,答案为D。



11、商场的自动扶梯以匀速由下往上行驶,两个孩子在行驶的扶梯上上下走动,女孩由下往上走,男孩由上往下走,结果女孩走了40级到达楼上,男孩走了80级到达楼下。如果男孩单位时间内走的扶梯级数是女孩的2倍。则当该扶梯静止时,可看到的扶梯梯级有_____。
A: 40级B: 50级C: 60级D: 70级
参考答案: C 本题解释:正确答案是C考点行程问题解析解析1:设女孩的速度为x,男孩为2x,扶梯的速度为y,根据题意可知男孩和女孩所用的时间相同,有x+y=2x-y,得x:y=2,即女孩的速度为扶梯的2倍,因此当女孩走了40级时扶梯走了20级,扶梯静止时有60级。因此正确答案为C。解析2:因为男孩单位时间内走的扶梯级数是女孩的2倍,所以男孩走80级的时间和女孩走40级的时间相等,由此可知他们两个乘电梯的时间相同,则电梯运行距离也相等,也即有如下两式:对于男孩:电梯长度=80-电梯运行距离;对于女孩:电梯长度=40+电梯运行距离。由此可知电梯长度为60,故正确答案为C。



12、有关部门要连续审核30个科研课题方案,如果要求每天安排审核的课题个数互不相等且不为零,则审核完这些课题最多需要_____。
A: 7天B: 8天C: 9天D: 10天
参考答案: A 本题解释:参考答案:A题目详解:每天审核的课题应尽可能少,才能增加审核天数。假设第1天审核1个,则第2天最少审核2个,……依此类推,则审核完这些课题天数最多的方案应为每天审核1,2,3,4,5,6,9或1,2,3,4,5,7,8。显然所需天数都为7天。所以,选A。考查点:数量关系>数学运算>抽屉原理问题>抽屉原理1



13、甲乙丙的速度之比为3:4:5,经过相同的一段路,三人所用时间之比:_____
A: 3:4:5  B: 5:4:3 C: 20:15:12 D: 12:8:5
参考答案: C 本题解释:C【解析】根据公式“时间=路程÷速度”可知,经过相同的路程,甲、乙、丙的时间比为1/3:1/4:1/5=20:15:12。



14、某工厂11月份工作忙,星期六、日不休息,而且从第一天开始,每天下班后都从总厂陆续派相同人数的工人到分厂工作,直到月底下班后,总厂还剩工人238人。如果月底统计总厂工人的工作量是8070个工作日(1人工作1天为1个工作日),且无1个缺勤,那么,这个月由总厂派到分厂工作的工人共多少人?_____
A: 46人B: 30人C: 60人D: 62人
参考答案: C 本题解释:11月份有30天。设每天下班后派往分厂的人数为2,则根据题意可知,最后一天总厂的工作量为238+z,可列方程238+x+238+2x+…+238+30x=8070,解得x=2,即每天派2人到分厂工作,11月份30天共派了60人到分厂。故答案为C。



15、正方体 中,侧面对角线所成的角等于_____。
A: B: C: D:
参考答案: B 本题解释:参考答案:B题目详解:根据题意,连接。∵为等边三角形,又∵平行,∴侧面对角线所成的角等于。因此,选B。考查点:数量关系>数学运算>几何问题>立体几何问题>与线、角相关问题(立体)



16、某船第一次顺流航行21千米又逆流航行4千米,第二天在同 河道中顺流航行12千米,逆流航行7千米,结果两次所用的时间相等。假设船本身速度及水流速度保持不变,则顺水船速与逆水船速之比是_____。
A: 2. 5:1 B: 3:1 C: 3. 5:1 D: 4:1
参考答案: B 本题解释:【解析】B。设船本身速度为 X 千米 / 小时,水流速度为 Y 千米 / 小时,则顺水船速为 (X+Y) 千米 / 小时,逆水船速为 (X-Y) 千米 / 小时。依据题意可得: 21X+Y+4X-Y = 12X+Y+7X-Y ,由此可得 X+YX-Y = 3 ,即顺水船速是逆水船速的 3 倍。



17、李明从图书馆借来一批图书,他先给了甲5本和剩下的,然后给了乙4本和剩下,最后自己还剩2本。李明共借了多少本书?_____
A: 30B: 40C: 50D: 60
参考答案: A 本题解释: 【解析】A。解法一、设李明共借书x本,则,解得x=30;解法二、思维较快的直接倒推用反计算,



18、一杯糖水,第一次加入一定量的水后,糖水的含糖百分比变为15%;第二次又加入同样多的水,糖水的含糖百分变比为12%;第三次再加入同样多的水,糖水的含糖百分比将变为多少?_____
A: 8%B: 9%C: 10%D: 11%
参考答案: C 本题解释:【答案】C。解析:故正确答案为C。



19、某社团共有46人,其中36人爱好戏剧,30人爱好体育,38人爱好写作,40人爱好收藏,问这个社团至少有_____人以上四项活动都喜欢。
A: 5B: 6C: 7D: 8
参考答案: B 本题解释:【答案解析】根据题意可知,不爱好戏剧的有46-36=10人,不爱好体育的有46-30=16人,不爱好写作的有46-38=8人,不爱好收藏的有46-40=6人。要使四项活动都喜欢的人最少,则应使不爱好这四项活动的人最多,即使不爱好这四项活动的人均不重复,所以至少有46-(10+16+8+6)=6人四项活动都喜欢。所以正确答案为B项。



20、一项工程如果交给甲乙两队共同施工,8天能完成;如果交给甲丙两队共同施工,10天能完成;如果交给甲丁两队共同施工,15天能完成;如果交给乙丙丁三队共同施工,6天就可以完成。如果甲队独立施工,需要多少天完成?_____
A: 16 B: 20C: 24D: 28
参考答案: C 本题解释:【解析】C。本题为工程问题,设工作总量为120,则甲乙工作效率和为15、甲丙工作效率和为12、甲丁工作效率和为8、乙丙丁效率和为20,可得甲的效率为(15+12+8-20)÷3=5,则甲单独完成需要120÷5=24天。所以选择C选项。



21、将两位数的个位数与十位数互换后所得的数是原来的十分之一,这样的两位数有多少个?_____
A: 6B: 9C: 12D: 15
参考答案: B 本题解释:B【解析】设原数字的个位数字为x,十位数字为y,则得:(10y+x)X1/10=10x+y化简得x=0个位数字是0的两位数有10,20,30,40,50,60,70,80,90,共9个,故正确答案为B。



22、甲、乙两人进行乒乓球比赛,比赛采取三局两胜制,无论哪一方先胜两局则比赛结束。甲每局获胜的概率为2/3,乙每局获胜的概率为1/3。问甲最后取胜的概率是多少?_____
A: AB: BC: CD: D
参考答案: A



23、足球比赛的记分规则为:胜一场得3分;平一场得1分;负一场得0分。一个队打了14场,负5场,共得19分,那么这个队胜了几场?_____
A: 3 B: 4 C: 5 D: 6
参考答案: C 本题解释: 【解析】C。设这个队胜了X场,可得方程3X+9-X=19,得X=5,所以此队胜了5场。



24、某船第一次顺流航行21千米又逆流航行4千米,第二次在同一河道中顺流航行12千米,逆流航行7千米,结果两次所用的时间相等。则顺水船速与逆水船速之比是_____。(设船本身的速度及水流的速度都是不变的)
A: 4∶1B: 3∶1C: 2∶1D: 9∶1
参考答案: B 本题解释:B 【解析】船第一次顺流航行21千米,第二次顺流航行12千米,21-12=9,也就是第一次顺流多用了航行9千米所用的时间,第二次逆流比第一次多用时间于3千米的航行上,总的两次时间相等。就是顺流9千米用的时间等于逆流3千米所用的时间。顺流船速:逆流船速=(21-12)∶(7-4)=3∶1,即顺水船速是逆水船速的3倍。



25、甲、乙两港相距720千米,轮船往返两港需要35小时,逆流航行比顺流航行多花5个小时;帆船在静水中每小时行驶24千米,问帆船往返两港需要多少小时?_____
A: 58B: 60C: 64D: 66
参考答案: C 本题解释:C。分析可知轮船逆流航行了20小时,顺流航行了15小时。可得水流速度是(720÷15—720÷20)÷2=6千米/小时,所以帆船顺水速度是24+6=30千米/小时,逆水速度是24—6=18千米/小时,往返需要720÷30+720÷18=64小时。



26、某商场举行周年让利活动,单件商品满300减180元,满200减100元,满100减40元;若不参加活动则打5.5折。小王买了价值360元,220元,150元的商品各一件,最少需要多少元钱?_____
A: 360B: 382.5C: 401.5D: 410
参考答案: B 本题解释:【答案】B。解析:如下表:因此最少需要180+120+82.5=382.5元。



27、某单位职工24人中,有女性11人,已婚的有16人。在婚的16人中有女性6人。问这个单位的未婚男性有多少人?_____
A: 1B: 3C: 9D: 12
参考答案: B 本题解释:答案:B【解析】男性人数为:24-11=13,已婚男性为l6-6=10(人),因此,未婚男性为13-10=3(人),故选B。



28、一名事业单位职工1978年参加工作时月工资总额是49.5元,2012年其年工资是1978年的112倍且每月还多11元,改革开放以来这名职工月工资增加了多少元?_____
A: 5050B: 5505.5C: 5545D: 5555.5
参考答案: B 本题解释:正确答案是B考点和差倍比问题解析改革开放以来该职工月工资增长量是1978年工资的111倍还多11元,也即:49.5×111+11=49.5×111+11=5505.5元,故正确答案为B。



29、某公司甲、乙两个营业部共有50人,其中32人为男性。已知甲营业部的男女比例为5:3,乙营业部的男女比例为2:1,问甲营业部有多少名女职员?_____
A: 18B: 16C: 12D: 9
参考答案: C 本题解释:正确答案是C考点和差倍比问题解析设甲营业部有3X名女职员,乙营业部有Y名女职员,则有5X+2Y=32;32+3X+Y=50,解得X=4,Y=6,故甲营业部有3×4=12名女职员,故正确答案为C。秒杀技有题意可知,两个营业部共有50-32=18名女职员,排除A。根据“乙营业部的男女比例为2:1”可知,乙营业部的男职员为偶数,由于男职员的总人数为偶数,则甲营业部的男职员人数同样为偶数。根据“已知甲营业部的男女比例为5:3”,甲营业部的女职员人数能同时被2和3整除,排除B、D,故正确答案为C。



30、从一楼走到五楼,爬完一层休息30秒,一共要210秒,那么从一楼走到7楼,需要多少秒?_____
A: 318B: 294C: 330D: 360
参考答案: C 本题解释:【答案】C。解析:从一楼走到五楼,休息了3次,那么每爬上一层需要的时间为(210-30×3)÷4=30秒,故从一楼走到七楼需要30×(7-2)+30×(7-1)=330秒。故正确答案为C。



31、一根木杆,第一次截去了全长的1/2,第二次截去所剩木杆的1/3,第三次截去所剩木杆的1/4,第四次截去所剩木杆的1/5,这时量得所剩木杆长为6厘米。问:木杆原来的长是多少厘米?_____
A: 15B: 26C: 30D: 60
参考答案: C 本题解释:C解析:6÷(1-1/5)÷(1-1/4)÷(1-1/3)÷(1-1/2)=6÷(4/5×3/4×2/3×1/2)=6÷1/5=30(厘米)故本题选C。



32、某储户于1999年1月1日存入银行60 000元,年利率为2.00%,存款到期日即2000年1月1日将存款全部取出,国家规定凡1999年11月1日后孳生的利息收入应缴纳利息税,税率为20%,则该储户实际提取本金合计为_____。
A: 61 200元 B: 61 160元C: 61 000元 D: 60 040元
参考答案: B



33、某天办公桌上台历显示的是一周前的日期,将台历的日期翻到今天,正好所翻页的日期加起来是168,那么今天是几号?_____
A: 20B: 21C: 27D: 28
参考答案: D 本题解释:正确答案是D考点数列问题解析一周的日期成等差数列,则中位数为168÷7=24,因此这一周的日期分别为21、22、23、24、25、26、27,因此今天是28号。故正确答案为D。



34、连接正方体每个面的中心构成一个正八面体(如下图所示)。已知正方体的边长为6厘米,则正八面体的体积为_____立方厘米
A: AB: BC: CD: D
参考答案: C 本题解释:正确答案是C考点几何问题解析秒杀技该正八面体可看成上下两个正四棱锥组成,注意到每个四棱锥的底面面积为正方体底面面积的一半,每个四棱锥的高为立方体棱长的一半,因此可知每个四棱锥的体积为正方体体积的1/12,故该正八面体体积为正方体体积的1/6,于是其体积为1/6×6^3=36。



35、一杯含盐 的盐水 克,要使盐水含盐 ,应该加盐多少克?_____
A: 12.5B: 10C: 5.5D: 5
参考答案: A 本题解释:参考答案:A题目详解:应用工程法:设需要盐克,;;所以,选A。考查点:数量关系>数学运算>浓度问题>溶质变化



36、建华中学共有1600名学生,其中喜欢乒乓球的有1180人,喜欢羽毛球的有1360人,喜欢篮球的有1250人,喜欢足球的有1040人,问以上四项球类运动都喜欢的至少有几人?_____
A: 20人B: 30人C: 40人D: 50人
参考答案: B 本题解释:正确答案是B考点抽屉原理问题解析采取逆向思维法。不喜欢乒乓的1600-1180=420,不喜欢羽毛球的1600-1360=240,不喜欢篮球的1600-1250=350,不喜欢足球的1600-1040=560,要使四项运动都喜欢的人数最少,那么不喜欢的人数就要最多那么都尽量不相交,从而达到最多:420+240+350+560=1570人,所以喜欢的最少的为1600-1570=30人,故正确答案为B。



37、两枚导弹相距41620公里,处于同一弹道上彼此相向而行。其中一枚以每小时38000公里的速度行驶。另一枚以时速22000公里的速度行驶。问它们在碰撞前1分钟时相距多远?_____
A: 4.162公里B: 41.62公里C: 1000公里D: 60000公里
参考答案: C 本题解释:正确答案是C考点行程问题解析38000+22000=60000(公里/小时)=1000(公里/分钟),可见两个相对飞行的导弹以每分钟1000公里的速度靠近。那么,当它们在最后一分钟的时候,两者相距1000公里,故正确答案为C。



38、小明前三次数学测验的平均分数是88分,要想平均分数达到90分以上,他第四次测验至少要达到_____
A: 98分B: 96分C: 94分D: 92分
参考答案: B 本题解释: 【解析】B。分,该数值可以根据以上式子判定尾数为6,选择B。



39、_____
A: 1/6B: 5/66C: 7/85D: 1/128
参考答案: B 本题解释:正确答案是B考点计算问题解析



40、在1000以内,除以3余2,除以7余3,除以11余4的数有多少个?_____
A: 4B: 5C: 6D: 7
参考答案: B 本题解释:正确答案是B考点余数与同余问题解析同余问题,不符合“余同取余,和同加和,差同减差,最小公倍数做周期”的口诀,通过余数组获得通式。除以3余2的余数组为2、5、8、11、14、17、···;除以7余3的余数组为3、10、17、···。结合此两者可知满足前两条的被除数可写成21n+17,其余数组为17、38、59、···;而除以11余4的余数组为4、15、26、37、48、59、···。结合此两者可知满足三条的被除数可写成231n+59。由题意:0≤231n+59≤1000,解得0≤n≤4。所以这样的数共有5个,故正确答案为B。口诀解释:余同取余,例如“一个数除以7余1,除以6余1,除以5余1”,可见所得余数恒为1,则取1,被除数的表达式为210n+1;和同加和,例如“一个数除以7余1,除以6余2,除以5余3”,可见除数与余数的和相同,取此和8,被除数的表达式为210n+8;差同减差,例如“一个数除以7余3,除以6余2,除以5余1”,可见除数与余数的差相同,取此差4,被除数的表达式为210n-4。特别注意前面的210是5、6、7的最小公倍数。



41、某月刊每期定价5元。某单位一部分人订半年,另一部分人订全年,共需订费480元;如果订半年的改订全年,订全年的改订半年,那么共需420元。共有多少人订了这份期刊?
A: 25B: 20C: 15D: 10
参考答案: D 本题解释:D。所有人订一年半期刊所花的钱为(480+420)元,则订了这份期刊的人数为(480+420)+[5×(6+12)]=10个人。



42、_____
A: 1B: 83C: 2209D: 6889
参考答案: D 本题解释:正确答案是D考点计算问题解析



43、有41个学生要坐船过河,渡口处只有一只能载4人的小船(无船工),他们要全部渡过河去,至少要使用这只小船渡河多少次?_____
A: 23B: 24C: 27D: 26
参考答案: C 本题解释:【答案】C。解析:套用公式,过河次数=(41-1)/(4-1)=13.33,过河次数为整数,13<13.33<14,要使所有人都过河,只能取14。所求次数为单程次数,来回总共14×2-1=27次(最后一次过河不再返回)。故正确答案为C。公式:过河问题中每次过河都需要有一个人将船划回来,而最后一次过河不再需要划回来。N个人过河,船最多载M人,则过河次数为(N-1)/(M-1)。过河次数指单程次数,注意最后一次过河不需要人划回来,总次数=单程次数×2-1。



44、某单位有52人投票,从甲、乙、丙三人中选出一名先进工作者。在计票过程中的某时刻,甲得17票,乙得16票,丙得11票,如果规定得票比其他两人都多的候选人才能当选。那么甲要确保当选,最少要再得票_____。
A: 1张B: 2张C: 3张D: 4张
参考答案: D 本题解释:正确答案是D考点抽屉原理问题解析解析1:整体考虑,乙对甲威胁最大,甲乙共可以分52-11=41张选票,甲乙均得到20张时,甲仍然保证不了能当选,再得剩下的1张选票,即甲得到21张选票时,保证当选,所以还需要21-17=4张,选D。解析2:还剩下52-17-16-11=8张票。甲如果要确保当选,则考虑最差情况,剩下的票丙一票不拿,那么只有甲乙分配剩下的票,甲至少要拿8÷2=4张才能保证当选,故正确答案为D。解析3:已统计选票17+16+11=44,剩余52-44=8票。这里对甲最大的威胁是乙,设甲再得票x,乙再得票(8-x),令17+x=16+(8-x),由此推出,x=3.5,x最小是3.5,满足条件的整数取4,故正确答案为D。



45、两根同样长的蜡烛,点完粗蜡烛要3小时,点完细蜡烛要1小时。同时点燃两根蜡烛,一段时间后,同时熄灭,发现粗蜡烛的长度是细蜡烛的3倍。问两根蜡烛燃烧了多长时间?_____
A: 30分钟B: 35分钟C: 40分钟D: 45分钟
参考答案: D 本题解释:正确答案是D考点和差倍比问题解析



46、牧场上一片青草,每天牧草都匀速生长。这片牧草可供10头牛吃20天,或者可供15头牛吃10天。问:可供25头牛吃几天?_____
A: 5B: 10C: 15D: 20
参考答案: A 本题解释:A【解析】 这类题难就难在牧场上草的数量每天都在发生变化,我们要想办法从变化当中找到不变的量。总草量可以分为牧场上原有的草和新生长出来的草两部分。牧场上原有的草是不变的,新长出的草虽然在变化,因为是匀速生长,所以这片草地每天新长出的草的数量相同,即每天新长出的草是不变的。下面,就要设法计算出原有的草量和每天新长出的草量这两个不变量。设1头牛一天吃的草为1份。那么,10头牛20天吃200份,草被吃完;15头牛10天吃150份,草也被吃完。前者的总草量是200份,后者的总草量是150份,前者是原有的草加 20天新长出的草,后者是原有的草加10天新长出的草。200-150=50(份),20-10=10(天),说明牧场10天长草50份,1天长草5份。也就是说,5头牛专吃新长出来的草刚好吃完,5头牛以外的牛吃的草就是牧场上原有的草。由此得出,牧场上原有草(l0-5)× 20=100(份)或(15-5)×10=100(份)。现在已经知道原有草100份,每天新长出草5份。当有25头牛时,其中的5头专吃新长出来的草,剩下的20头吃原有的草,吃完需100÷20=5(天)。所以,这片草地可供25头牛吃5天。因此,正确答案为A。



47、一个两位数的中间再加上一个0,那么所得的这个数是原数的9倍,原来这个两位数是多少?_____
A: 15B: 25C: 35D: 45
参考答案: D 本题解释:正确答案是D考点计算问题解析解析1:设这个两位数个位是x,十位是y,则100y+x=9(10y+x),4x=5y,符合要求的个位数x只有5,所以y=4,所以结果为45。解析2:四个选项直接代入,只有D符合要求。所以正确答案为D。秒杀技根据整除特性,一个数如果是9的倍数,那么这个数各位相加也是9的倍数。而插入的是0,所以原两位数各位相加也是9的倍数,只有D符合。标签直接代入数字特性



48、如果l※4=1234,2※3=234,7※2=78,那么4※5=_____。
A: 456B: 45678C: 5678D: 56789
参考答案: B 本题解释:参考答案:B题目详解:根据题意,可得:1※4表示从1开始的4个连续自然数,即为1234;同理2※3表示从2开始的3个连续自然数,即为234;7※2表示从7开始的2个连续自然数,即为78;所以4※5表示的是从4开始的5个连续自然数,即为45678。所以,选B。考查点:数量关系>数学运算>计算问题之算式计算>定义新运算问题



49、某单位共有职工72人,年底考核平均分数为85分,根据考核分数,90分以上的职工评为优秀职工,已知优秀职工的平均分为92分,其他职工的平均分数是80分,问优秀职工的人数是多少?_____
A: 12B: 24C: 30D: 42
参考答案: C 本题解释:正确答案是C考点和差倍比问题解析解析1:假定优秀职工为X,其他职工为Y,则可得:X+Y=72,92X+80Y=85×72。解得X=30、Y=42。故正确答案为C。秒杀技观察选项C和D,二者选项相加为72,为待选选项。所有职工的平均分为85,显然更靠近80,则说明其他职工多于优秀员工,可确定优秀员工为30人。



50、某洗车店洗车分外部清洁和内部清洁,两道工序时间均不少于30分钟,而且同一辆车两道工序不能同时进行,洗车间同一时间只能容下2辆车。现有9辆车需要清洗,汽车进出洗车间的时间可忽略不计,则洗完9辆车至少需要的时间为_____。
A: 330分钟B: 300分钟C: 270分钟D: 250分钟
参考答案: C 本题解释:正确答案是C考点统筹规划问题解析前6辆车都是2辆车同时依次进行外部清洁和内部清洁,耗时60×3=180分钟。最后3辆车记为A、B、C,工作安排为A、B车外部清洁,然后B、C车内部清洁,然后A车内部清洁的同时C车外部清洁,共计耗时90分钟。因此洗完9辆车至少需要270分钟。故正确答案为C。



51、甲、乙沿同一公路相向而行,甲的速度是乙的1.5倍,已知甲上午8点经过邮局,乙上午10点经过邮局。问:甲乙在中途何时相遇? _____
A: 8点48分B: 8点30分C: 9点D: 9点10分
参考答案: A 本题解释:A。【解析】设乙的速度为x,甲就是1.5x,当甲8点到邮局时,乙离邮局还有2个小时的路程(2x),甲乙走完2x路程需要2x/(1.5x+x)=4/5小时=48分钟,加上8点,就是8点48分相遇。



52、科学家对平海岛屿进行调查,他们先捕获30只麻雀进行标记,后放飞,再捕捉50只,其中有标记的有10只,则这一岛屿上的麻雀大约有_____。
A: 150只B: 300只C: 500只D: 1500只
参考答案: A 本题解释:正确答案是A考点概率问题解析假设岛上有X只麻雀,捕捉30只进行标记,再捕捉50只,其中有10只有标记,则可列等式X∶30=50∶10,X=1500÷10=150(只),故正确答案为A。



53、田忌与齐威王赛马并最终获胜被传为佳话,假设齐威王以上等马、中等马和下等马的固定程序排阵,那么田忌随机将自己的三匹马排阵时,能够获得两场胜利的概率是_____。
A: 2/3B: 1/3C: 1/6D: 1/9
参考答案: C 本题解释:正确答案是C考点概率问题解析故正确答案为C。



54、工作人员做成了一个长60厘米,宽40厘米,高22厘米的箱子,因丈量错误,长和宽均比设计尺寸多了2厘米,而高比设计尺寸少了3厘米,那么该箱子的表面积与设计时的表面积相差多少平方厘米?_____
A: 4B: 20C: 8D: 40
参考答案: C 本题解释:正确答案是C考点几何问题解析实际表面积为(60×40+40×22+60×22)×2,设计表面积为(58×38+38×25+58×25)×2,计算尾数,实际表面积尾数为0,设计表面积尾数为(4+0+0)×2=8,二者之差尾数为2或8,显然只有C符合条件。故正确答案为C。



55、n为100以内的自然数,那么能令2n-1被7整除的n有多少个?_____
A: 32B: 33C: 34D: 35
参考答案: B 本题解释:答案:B.[解析]当n是3的倍数的时候,2n-1是7的倍数。也就是求100以内3的倍数,从3到99,共有33个。故选B。



56、一桶农药,加入一定量的水稀释后,浓度为15%;再加入同样多的水稀释,农药的浓度变为12%,若第三次再加入同样多的水,农药的浓度将变为多少?_____
A: 8%B: 10%C: 11%D: 13%
参考答案: B 本题解释:B。【解析】设δ加水稀释前农药量为x,?次所加水量为a,所求浓度为y%,则(x+a)15%=(x+2a)12%=(x+3a)y%,解得y%=10%。



57、某企业调查用户从网络获取信息的习惯,问卷回收率为90%,调查对象中有179人使用搜索引擎获取信息,146人从官方网站获取信息,246人从社交网站获取信息,同时使用这三种方式的有115人,使用其中两种的有24人,另有52人这三种方式都不使用,问这次调查共发出了多少份问卷:_____
A: 310B: 360C: 390D: 410
参考答案: D 本题解释:正确答案是D,解析:根据题意,收回问卷,则所求为。故正确答案为D。考点:容斥原理问题



58、三个单位共有180人,甲、乙两个单位人数之和比丙单位多20人,甲单位比乙单位少2人,求甲单位的人数_____。
A: 48人B: 49人C: 50人D: 51人
参考答案: B 本题解释:正确答案是B考点和差倍比问题解析解析1:设甲单位的人数为x人,则乙单位的人数为(x+2)人,丙单位的人数为(x+x+2-20)即为(2x-18)人,根据题意可得:x+(x+2)+(2x-18)=180,解得x=49,故选择B选项。解析2:由“三个单位共有180人,甲、乙两个单位人数之和比丙单位多20人”可得甲、乙两单位人数之和为:(180+20)÷2=100,又知“甲单位比乙单位少2人”,因此甲单位人数为:(100-2)÷2=49,故选择B选项。故正确答案为B。



59、三种动物赛跑,已知狐狸的速度是兔子的2/3,兔子的速度是松鼠的2倍,一分钟松鼠比狐狸少跑14米,那么半分钟兔子比狐狸多跑_____米。
A: 28B: 14C: 19D: 7
参考答案: B 本题解释:正确答案是B考点和差倍比问题解析根据题意,设兔子、狐狸、松鼠的速度比为6:4:3,一分钟松鼠比狐狸少跑14米,说明一份为14米/分钟,所以兔子和狐狸的速度分别为6×14和4×14,因此半分钟兔子比狐狸多跑(6×14-4×14)÷2=14米,故正确答案为B。秒杀技题目中时间为半分钟,实际上是一个时间陷阱,根据猜题技巧,选项中应有一个干扰选项是正确选项的2倍,只有A、B符合,即B项正确。标签猜题技巧



60、(浙江2002,第14题)下列选项中,值最小的是_____。
A: B: C: D:
参考答案: B 本题解释:参考答案:B题目详解:观察选项可知:;我们从简单着手,很明显可得到:,排除A、D选项;再比较的大小:,所以,排除C选项;所以,选B。解法二:遇到类似问题我们还可以采用“平方法”来比较大小。考查点:数量关系>数学运算>计算问题之算式计算>比较大小问题



61、有甲、乙两个项目组。乙组任务临时加重时,从甲组抽调了四分之一的组员。此后甲组任务也有所加重,于是又从乙组调回了重组后乙组人数的十分之一。此时甲组与乙组人数相等。由此可以得出结论_____。
A: 甲组原有16人,乙组原有11人B: 甲、乙两组原组员人数之比为16∶11C: 甲组原有11人,乙组原有16人D: 甲、乙两组原组员人数比为11∶16
参考答案: B 本题解释:答案:B。设甲组原有a人,乙组原有b人,故由题意可得:(b+a/4)×9/10=1/10(b+a/4)+3/4a,所以
A:b=16:11。



62、_____
A: AB: BC: CD: D
参考答案: B 本题解释:正确答案是B考点和差倍比问题解析将各项直接代入检验,只有B项符合,(21-5)/(29-5)=16/24=2/3,故正确答案为B。标签直接代入



63、(2009•国考)甲、乙两人共有260本书,其中甲的书有13%是专业书,乙的书有12.5%是专业书,问甲有多少本非专业书?_____
A: 75B: 87C: 174D: 67
参考答案: B 本题解释:参考答案:B本题得分:题目详解:根据题意甲的专业书:甲的书有13%是专业书,即有甲的13/100是专业书;甲的书本数:由于书的本数为整数,则甲的书本数只能为100或200;乙的专业书:乙的书有12.5%是专业书,即有乙的1/8是专业书;乙的书本数:由于书的本数为整数,则乙的书本数必能被8整除;甲、乙两人共有260本书,甲的书本数为100或200,则乙的书的本数为160或60,其中只有160能被8整除,故乙的书本数为160,则甲有100本书,其非专业书本数为100×(1-13%)=87本。所以,选B。考查点:数量关系>数学运算>计算问题之数的性质>整除问题>整除的性质



64、某公司中午订餐,周一有27人订餐,周二有39人订餐,周三有43人订餐,周四有41人订餐,周五有39人订餐。如果在这五天至少有一天订餐的人有39人,那么五天都订餐的最多有多少人?_____
A: 27B: 26C: 25D: 24
参考答案: A 本题解释:参考答案:A题目详解:依题意:将39人分为仅订餐一次和五天都订餐的;那么五天都订餐的最多有:人;而周一只有27人订餐;因此最多只有27人五天都订餐。所以,选A。考查点:数量关系>数学运算>计算问题之算式计算>最值问题



65、



66、甲、乙、丙、丁四人,其中每三个人的岁数之和分别是55、58、62、65。这四个人中年龄最小的是_____。
A: 7岁B: 10岁C: 15岁D: 18岁
参考答案: C 本题解释:正确答案是C考点平均数问题解析将55、58、62、65直接相加,可知其值等于原来四个数之和的3倍,于是可知原四个数字之和为(55+58+62+65)÷3=80,因此最小的数为80-65=15。故正确答案为C。



67、小王去一个离家12千米的地方,他每小时步行3千米,每步行50分钟他要休息10分钟,8点整出发,他几点可以到目的地?_____
A: 12点B: 12点30分C: 12点35分D: 12点40分
参考答案: D 本题解释:D。小王不休息的话他走12千米所需的时间是12÷3=4(小时),4小时包含4个50分钟余40分钟,因此小王总共休息了4个10分钟,那么小王花费的总时间是4小时40分钟,也就是小王到达目的地的时间是12点40分。故选D。名师点评:本题很多考生会有如下解法:根据题意每小时中有50分钟行走、10分钟休息,则每个小时小王实际行进2.5千米,因此要步行12千米,用时为12÷2.5=4.8(小时),合4小时48分钟。这是一种典型的错误解法,因为这样相当于取的是等价速度,在整数小时部分不会出现错误,但在非整数部分也即在最后一段,并不是按等价速度来行进的,而是直接行进40分钟到达目的地,而无休息时间。



68、某次数学竞赛设一、二等奖。已知(1)甲、乙两校获奖的人数比为 。(2)甲、乙两校获二等奖的人数总和占两校获奖人数总和的 。(3)甲、乙两校获二等奖的人数之比为 。问甲校获二等奖的人数占该校获奖总人数的百分数是几?_____
A: 20B: 30C: 50D: 60
参考答案: C 本题解释:参考答案:C题目详解:已知甲、乙两校获二等奖的人数之比为5:6,那么设甲获二等奖的人数为5份,乙为6份。因为二等奖的人数占两校人数总和的60%,那么甲校获二等奖人数占总数又因为甲、乙两学校获奖人数比为6:5,所以设总人数为11份,甲得奖的占其中6份可知甲校获二等奖者占该校获奖总人数的。所以,选C。考查点:数量关系>数学运算>和差倍比问题>比例问题



69、工人甲一分钟可生产螺丝3个或螺丝帽9个,工人乙一分钟可生产螺丝2个或螺丝帽7个,现在两人各花20分钟,共生产螺丝和螺丝帽134个,问生产的螺丝比螺丝帽多几个?_____
A: 34个B: 32个C: 30个D: 28个
参考答案: A 本题解释:正确答案是A考点不定方程问题解析设两人20分钟全部生产螺丝,则共生产了100个,注意到甲生产螺帽比螺丝每分钟多6个,乙每分钟多5个。设甲生产螺帽X分钟,乙生产螺帽Y分钟,根据鸡兔同笼原理,有6X+2Y=134-100,当X=4,Y=2时,符合条件,再代入计算,得螺帽有4×9+2×7=50个,螺丝有84个,则螺丝比螺帽多84-50=34个。故正确答案为A。



70、2005年7月1日是星期五,那么2008年7月1日是星期几_____
A: 星期三B: 星期四C: 星期五D: 星期二
参考答案: D 本题解释:正确答案是D考点星期日期问题解析2005,2006,2007都是平年(365天),2008是闰年(366天),365=52×7+1,所以,经历一个平年(365天),星期往后推一天,366=52×7+2,所以,经历一个闰年(366天),星期往后推两天,因为2005年7月1日是星期五,所以2008年7月1日是星期五+1+1+2=星期日+2=星期二。故正确答案为D。标签差异分析



71、某鞋业公司的旅游鞋加工车间要完成一出口订单,如果每天加工50 双,要比原计划晚3 天完成,如果每天加工60 双,则要比原计划提前2 天完成,这一订单共需要加工多少双旅游鞋?_____
A: 1200 双  B: 1300 双  C: 1400 双   D: 1500 双
参考答案: D 本题解释:【答案】D[解析]能被50、60整除的,排除B和C,再依次代入A和D,A不符合,所以选D。



72、把一个长18米、宽6米、高4米的大教室,用厚度为25厘米的隔墙将长分为3段,形成3个活动室(隔墙砌到顶),每间活动室的门窗面积都是15平方米,现在用石灰粉刷3个活动室的内墙壁和天花板,平均每平方米用石灰0.2千克,那么,一共需要石灰_____千克。
A: 68.8B: 74.2C: 83.7D: 59.6
参考答案: A 本题解释:参考答案:A题目详解:根据题意,可知:天花板总面积是:(18-0.25×2)×6=105平方米,内壁总面积是:(18-0.25×2)×4×2+4×6×6-15×3=239平方米,需用石灰粉刷的总面积是:105+239=344平方米,需用石灰为:344×0.2=68.8千克。考查点:数量关系>数学运算>几何问题>立体几何问题>表面积与体积问题



73、某车间从3月2日开始每天调入人,已知每人每天生产~件产品,该车间从月1日至3月21日共生产840个产品.该车间应有多少名工人? _____
A: 20B: 30C: 35D: 40
参考答案: B 本题解释:【答案】B。解析:从3月2日开始调入的每一个人生产的产品的个数正好组成以1为公差的等差数列20,19,18,……1,得调入的人生产的总产品数是:(20+1)×20÷2=210(个),所以原有工人生产的产品数=840-210=630(个),每人每天生产一个,所以工人数=630/21=30(个)。



74、在1至1000的1000个自然数中,既不是4的倍数,也不是6的倍数的数共有多少个?_____
A: 375B: 416C: 625D: 791
参考答案: C 本题解释:C【解析】1000÷4=250(个),所以1至1000中4的倍数的数有250个。1000÷6=166……4,所以1至1000中6的倍数的数有166个。1000÷(4×6)=41……16,说明1至1000中既是4的倍数,又是6的倍数的数有41个。即4的倍数的个数与6的倍数的个数的交集有41个,如图所示。所以1至1000中,既是4的倍数,也是6的倍数的数共有209+125+41=375(个)。则1至1000中,既不是4的倍数,也不是6的倍数的数共有:1000-(209+125+41)=1000-375=625(个)。故本题选C。



75、某公司的6名员工一起去用餐,他们各自购买了三种不同食品中的一种,且每人只购买了一份。已知盖饭15元一份,水饺7元一份,面条9元一份,他们一共花费了60元。问他们中最多有几人买了水饺?_____
A: 1B: 2C: 3D: 4
参考答案: C 本题解释:正确答案是C考点不定方程问题解析假定购买三种食物人数分别为X、Y、Z,根据题意X+Y+Z=6,15X+7Y+9Z=60。要使得水饺最多,则其他尽可能少。根据奇偶性质,可知X、Y、Z三个数中必然两个为奇数一个为偶数,或者三个均为偶数。将选项代入验证,若Y=4,此时X、Z无正整数解;若Y=3,可知X=2,Z=1,符合题意。因此正确答案为C。秒杀技得到15X+7Y+9Z=60后,注意到15、9、60均能被3整除,因此7Y必然能被3整除,仅C符合。



76、在一只底面半径是20cm的圆柱形小桶里,有一半径为l0cm的圆柱形钢材浸没在水中,当钢材从桶中取出后,桶里的水下降了3cm。求这段钢材的长度。_____
A: 3cmB: 6cmC: 12cmD: 18cm
参考答案: C 本题解释:【答案】C。解析:钢材的体积与水下降的体积相等,钢材长度与水下降的高度之比等于二者底面积之比的倒数,由此可得钢材长度为3×4=12。



77、股票买入和卖出都需要通过证券公司进行交易,每次交易费占交易额的2‰。某人以10元的价格买入1000股股票,几天后又以12元的价格全都卖出,若每次交易还需付占交易额3‰的印花税,则此人将获利_____。
A: 1880元B: 1890元C: 1900元D: 1944元
参考答案: B 本题解释:正确答案是B考点经济利润问题解析交易两次,所以交两次交易费,交两次印花税,故可得如下:(12-10)×1000-(12+10)×1000×(2‰+3‰)=2000-22000×5‰=2000-110=1890,故正确答案为B。



78、篮球规则中得分有3分,2分,1分,若在一次比赛中,队员A一人得了13分,那么他的得分组合共_____种。
A: 18 B: 19 C: 20 D: 21
参考答案: D 本题解释:D[解析]当A的3分分别拿到4,3,2,1,0次的时候,对应的组合数分别是1,3,4,6,7,所以A的得分组合共有1+3+4+6+7=21种,选D。



79、公路上有三辆同向行驶的汽车,其中甲车的时速为63公里,乙、丙两车的时速均为60公里,但由于水箱故障,丙车每连续行驶30分钟后必须停车2分钟。早上10点,三车到达同一位置,问1小时后,甲、丙两车最多相距多少公里?_____
A: 5B: 7C: 9D: 11
参考答案: B 本题解释:正确答案是B考点行程问题解析在这1个小时中,丙车最多休息4分钟,也即丙在一个小时内最少行程为60×56÷60=56公里。而甲车持续行驶,可达63公里。因此两车最多相距7公里,故正确答案为B。



80、地上放着一个每一面上都有一个数的六面体箱子,对面两个数的和均为27,甲能看到顶面和两个侧面,这三个面上的数字之和是35;乙能看到顶面和另外两个侧面,且这三个面上的数字和为47。箱子贴地一面的数字是_____。
A: 14B: 13C: 12D: 11
参考答案: B 本题解释:正确答案是B考点趣味数学问题解析题目给出对面数字之和为27,则注意将其余条件中出现的对面合在一起。从这一点出发,可以看出若将甲与乙看到的面合在一起,则实际共看到2个顶面与4个不同的侧面。而四个不同侧面恰为两组对面,也即其数字之和为27×2=54,因此顶面的数字为(35+47-54)÷2=14,于是底面数字为27-14=13,故正确答案为B。



81、李先生去10层楼的8层去办事,恰赶上电梯停电,他只能步行爬楼。他从第1层爬到第4层用了48秒,请问,以同样的速度爬到第8层需要多少秒? _____
A: 112B: 96C: 64D: 48
参考答案: A 本题解释:A【解析】假设每上一层楼的路程为一段楼梯,李先生从第1 层爬到第4 层,路程为3 段楼梯,用时48 秒,则每一段楼梯用时16 秒,第1 层到第8 层路程为7 段,则需用时16×7=112 秒。故选A。



82、_____
A: 3B: 4C: 5D: 6
参考答案: C 本题解释:正确答案是C考点计算问题解析



83、有A、B两种商品,如果A的利润增加20% ,B的利润减少10% ,那么A、B两商品的利润就相同了。问原来A商品的利润是B商品利润的百分之几?_____
A: 80%B: 70%C: 85% D: 75%
参考答案: D 本题解释:D



84、出租车在7公里以内收费10.6元(不足7公里按7公里收费),以后每走1公里收费1.8元,某乘客有一次乘出租车花了34元,他乘坐了多少公里?_____
A: 16B: 17C: 20D: 23
参考答案: C 本题解释:C解析:设他乘坐了x公里,根据题意列方程,得:10.6+(x-7)×1.8=34,解得:x=20,选C。



85、某市规定,出租车合乘部分的车费向每位乘客收取显示费用的60%,燃油附加费由合乘客人平摊。现有从同一地方出发的三位客人合乘,分别在D、E、F点下车,显示的费用分别为10元、20元、40元,那么在这样的合乘中,司机的营利比正常(三位客人是一起的,只是分别在上述三个地方下车)多_____。
A: 1元B: 2元C: 10元D: 12元
参考答案: C 本题解释:正确答案是C考点分段计算问题解析第一位下车客人为合乘,涉及金额为10元;第二位下车客人为合乘,涉及金额为20元;第三位下车客人合乘部分涉及金额20元,独乘部分涉及金额为20元;所以实际营利为10×60%+20×60%+20×60%+20=50元,比正常多50-40=10元。故正确答案为C。标签分类分步



86、父亲和儿子的年龄和为50岁,三年前父亲的年龄是儿子的三倍,多少年后儿子年满18岁?_____
A: 2B: 4C: 6D: 8
参考答案: 本题解释:B【解析】设x年后儿子年满18岁,则儿子现在的年距为18-x,父亲为50-(18-x)=32+x,根据题意得:3(18-x-3)=32+x-3,解得x=4,故正确答案为B。



87、甲、乙、丙、丁四人做手工纸盒,已知甲、乙、丙三人平均每人做了28个,乙、丙、丁三人平均每人做了31个,已知丁做了33个,问甲做了多少个?_____
A: 24个B: 26个C: 27个D: 28个
参考答案: A 本题解释:正确答案是A考点平均数问题解析由题意,甲、乙、丙共做了28×3=84个,乙、丙、丁共做了31×3=93个,则丁比甲多做了93-84=9(个),已知丁做了33个,那么甲做了33-9=24个,故正确答案为A。



88、小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回),他们在离甲村3.5千米处第一次相遇,在离乙村2千米处第二次相遇。问他们两人第四次相遇的地点离乙村多远(相遇指迎面相遇)?_____
A: 1千米 B: 1.2千米C: 1.5千米D: 1.8千米
参考答案: A 本题解释:【答案】A。解析:直线多次相遇问题。第二次相遇两人已共同走了甲、乙两村距离的3倍,因此张走了3.5×3=10.5千米。从图上可看出,第二次相遇处离乙村2千米,因此,甲、乙两村距离是10.5-2=8.5千米。每次相遇甲乙二人路程和都比上次相遇多2倍的两地间距。第四次相遇时,两人已共同走了(3+2+2)倍的两村距离,其中张走了3.5×(2×4-1)=24.5千米,24.5=8.5+8.5+7.5千米。因此第四次相遇处,离乙村8.5-7.5=1千米。



89、“红星”啤酒开展“7个空瓶换l瓶啤酒”的优惠促销活动。现在已知张先生在活动促销期问共喝掉347瓶“红星”啤酒,问张先生最少用钱买了多少瓶啤酒?_____
A: 296B: 298C: 300D: 302
参考答案: B 本题解释:由题可知,6个空瓶可以换一个瓶子里面的啤酒,298÷6=49……4,只有49+298=347。



90、如果当“张三被录取的概率是,李四被录取的概率是时,命题:要么张三被录取,要么李四被录取”的概率就是_____
A: B: C: D:
参考答案: B 本题解释:参考答案:B题目详解:“要么张三录取要么李四录取”就是:2人不能同时录取且至少有一人录取;张三被录取的概率是,李四被录取的概率是;那么有两种情况:张三被录取但李四没被录取的概率:;张三没被录取但李四被录取的概率:;所以,概率为:;所以,选B。考查点:数量关系>数学运算>概率问题>条件概率



91、用a、b、c三种不同型号的客车送一批会议代表到火车站,用6辆a型车,5趟可以送完;用5辆a型车和10辆b型车,3趟可以送完;用3辆b型车和8辆c型车,4趟可以送完。问先由3辆a型车和6辆b型车各送4趟,剩下的代表还要由2辆c型车送几趟?_____
A: 3趟B: 4趟C: 5趟D: 6趟
参考答案: B 本题解释:【答案】B。解析:方程法解题,主要求出a=2b,3b=2c,然后列方程求得选择B选项。



92、甲、乙两人玩打赌游戏,连续抛三个硬币,如果同时出现正面或同时出现反面算乙输,出现两个正面或两个反面算甲输,若甲输,则甲要给乙10元,问:乙输要给甲多少,甲才肯玩游戏?_____
A: 10元B: 15元C: 20元D: 30元
参考答案: D 本题解释:参考答案题目详解:连续抛三个硬币,同时出现正面或反面的概率是:;出现两个正面或两个反面的概率是:;可见甲输的概率是乙输的概率的3倍;因此乙若输,则需要给甲(元),甲才肯玩这个游戏;所以,选D。考查点:数量关系>数学运算>概率问题>单独概率



93、有一列车从甲地到乙地,如果是每小时行100千米,上午11点到达,如果每小时行80千米是下午一点到达,则该车的出发时间是_____
A: 上午7点 B: 上午6点 C: 凌晨4点 D: 凌晨3点
参考答案: D 本题解释: 【解析】D。设出发时间是T,那么100×(11-T)=80(13-T),解得T=3,即凌晨3点。



94、甲班与乙班同学同时从学校出发去某公园,甲班步行的速度是每小时4千米,乙班步行的速度是每小时3千米。学校有一辆汽车,它的速度是每小时48千米,这辆汽车恰好能坐一个班的学生。为了使这两班学生在最短的时间内到达,那么,甲班学生与乙班学生需要步行的距离之比是_____。
A: 15:11B: 17:22C: 19:24D: 21:27
参考答案: A 本题解释:正确答案是A考点和差倍比问题解析设甲步行X小时,乙步行Y小时。故可得方程4X+48Y=3Y+48X,解得X:Y=45:44,所以步行距离之比4X:3Y=15:11,故正确答案为A。



95、用方形地砖铺一块了正方形地面,四周用不同颜色的地砖加以装饰,用47块不同颜色的砖装饰了这块地面相邻的两边。这块地面一共要用_____块砖。
A: 324B: 576C: 891D: 1024
参考答案: B 本题解释:B【解析】最外层每边铺地砖(47+1)÷2=24块,故一共要用24×24=576块砖。



96、一个边长为20的方阵,最外面三圈人数总和为多少?_____
A: 196B: 204C: 256D: 324
参考答案: B 本题解释:参考答案:B题目详解:方阵边长为20,总人数为400;除去最外面三圈人数,里面的小方阵边长为:,人数为;最外面三圈人数为:人。所以,选B。考查点:数量关系>数学运算>特殊情境问题>方阵问题>空心方阵问题



97、3种动物赛跑,已知狐狸的速度是兔子的 ,兔子的速度是松鼠的2倍,一分钟松鼠比狐狸少跑14米,那么半分钟兔子比狐狸多跑_____米。
A: 28B: 19C: 14D: 7
参考答案: C 本题解释:C【解析】由题意可得:兔子速度∶松鼠速度∶狐狸速度=6∶3∶4,又因为“一分钟松鼠比狐狸少跑14米”即半分钟松鼠比狐狸少跑7米,所以令半分钟兔子、松鼠、狐狸分别跑6a、3a、4a,4a-3a=7,故a=7,所以半分钟兔子比狐狸多跑6×7-4×7=14(米)。



98、小蔡去超市购物,她买了1.6千克苹果,4磅食油和3.8市斤芦柑。请问小蔡买的这三种食品最重的是哪一种?_____
A: 苹果B: 食油C: 芦柑D: 三者一样重
参考答案: C 本题解释:正确答案是C考点其他解析本题主要考查不同单位之间的数量比较,做此类题目,应首先换算为同一单位。1磅=0.454千克,1市斤=0.5千克,故:4磅=1.816千克,3.8市斤=1.9千克,所以1.6<1.816<1.9,故正确答案为C。



99、某月的最后一个星期五是这个月的25号,这个月的第一天是星期几?_____
A: 星期二B: 星期三C: 星期四D: 星期六
参考答案: A 本题解释:A 【解析】因为25=3×7+4,所以这个月的4号也是星期五,故这个月的第一天是星期二。



100、杯中原有浓度为18%的盐水溶液100ml,重复以下操作2次,加入100ml水,充分配合后,倒出100ml溶液,问杯中盐水溶液的浓度变成了多少?_____
A: 9%B: 7.5%C: 4.5%D: 3.6%
参考答案: C 本题解释:第一次操作后盐水浓度为,第二次操作后浓度为,故应选择C。




首页 上页 1 2 下页 尾页 2/2/2
微信搜索关注"91考试网"公众号,领30元,获取公务员事业编教师考试资料40G
【省市县地区导航】【考试题库导航】
 ★ 公务员考试省级导航 ★ 
全国 A安徽 B北京 C重庆 F福建 G广东 广西 甘肃 贵州 H河南 河北 湖南 湖北 黑龙江 海南 J江苏 江西 吉林 L辽宁 N内蒙古 宁夏 Q青海 S山东 山西 陕西 四川 上海 T天津 X新疆 西藏 Y云南 Z浙江 更详细省市县级导航 公务员考试成绩快速提升技巧 公务员考试行测电子教材
 ★ 公务员考试信息汇总 ★ 
 ★ 公务员考试试题汇总 ★ 
 ★ 省市县导航及其他考试 ★ 

电脑版  |  手机版  |  返回顶部