时间:2021-01-03 07:17:41
1、单选题 A、B、C、D、E是5个不同的整数,两两相加的和共有8个不同的数值,分别是17、25、28、31、34、39、42、45,则这5个数中能被6整除的有几个?_____
A: 4
B: 1
C: 2
D: 3
参考答案: C
本题解释:正确答案是C考点趣味数学问题解析设A<B<C<D<E,则必有A+B=17,A+C=25,C+E=42,D+E=45。两两相加,应该有10个数值,因此必有两个重复值。这10个数值相加,必为4的倍数,将题中8个数值相加得261,除以4余1,因此另外两个加和必然除以4余3,重复的两个数在28、31、34、39中,因此这两个数为28、39或28、31,28必为重复值,可知B+C=A+D=28,所以,A=7,B=10,C=18,D=21,E=24,能被6整除的有18、24两个。故正确答案为C。
2、单选题 一项工程,甲单独做,6天可完成;甲乙合做,2天可完成;则乙单独做,_____天可完成。
A: 1.5
B: 3
C: 4
D: 5
参考答案: B
本题解释:正确答案是B考点工程问题解析设甲每天完成量为1,则工程总量为6,甲乙合作两天完成,则甲乙合作每天完成量为6÷2=3,所以乙单独每天工作量为3-1=2,则乙需要6÷2=3天完成任务。故正确答案为B。
3、单选题 某种考试已举行了24次,共出了试题426道,每次出的题数有25题,或者16题,或者20题,那么其中考25题的有多少次?_____
A: 4
B: 2
C: 6
D: 9
参考答案: B
本题解释:B【解析】 假设24次考试,每次16题,则共考16×24=384(道),比实际考题数少426-384=42(道),也就是每次考25题与每次考20题,共多考的题数之和为42道。而考25题每次多考25-16=9(道),考20题每次多考20-16=4(道)。这样有9×A+4×B=42,其中A表示考25题的次数,B表示考20题的次数。根据数的奇偶性可知,B无论是奇数还是偶数,4B总是偶数,那么9A也是偶数,因此A必定是偶数,且A不是2就是4。如果A=4,则9×4+4×B=42,B=1.5不合题意,应删去,所以考25道试题的次数是2次。
4、单选题 某小区物业征集业主意见,计划从100户业主中抽取有20户进行调查。100户业主中有b户主年龄超过60岁,a户户主年龄不满35岁,户主年龄在36岁到59岁的有25户。为了使意见更具代表性,物业采取分层抽样的方法,从b户中抽取了4户,则a的值可能是___ __。
A: 55
B: 66
C: 44
D: 50
参考答案: A
本题解释:正确答案是A考点和差倍比问题解析100户中抽取20户,可知抽取比例为5:1,根据题意,4:b=20:100,a+b=75,解得a=55。故答案为A。
5、单选题 某企业有甲、乙、丙三个仓库,且都在一条直线上,之间分别相距1千米、3千米,三个仓库里面分别存放货物5吨、4吨、2吨。如果把所有的货物集中到一个仓库,每吨货物每千米运费是90元,请问把货物放在哪个仓库最省钱?_____
A: 甲
B: 乙
C: 丙
D: 甲或乙
参考答案: B
本题解释:正确答案是B考点统筹规划问题解析总运费等于所运货物的吨数乘以所运的距离,要使总运费最少,就要使所运货物的吨数最少且所运的距离最短。因为丙仓库的货物最少,显然丙地的货物应向“甲、乙”方向运。假设丙的两吨货物运到乙仓库,此时乙仓库的货物是6吨大于甲仓库的货物吨数,所以应该把甲仓库的5吨运往乙仓库,因此选择乙仓库最省钱。故正确答案为B。注释:“非闭合运输集中”问题核心法则:在非闭合的路径上(包括线形、树形等,不包括环形)有多个“点”,每个点之间通过“路”来连通,每个“点”上有一定的货物,需要用优化的方法把货物集中到一个“点”上的时候,通过以下方式判断货物流通的方向:判断每条“路”的两侧的货物总重量,在这条“路”上一定是从轻的一侧流向重的一侧。