时间:2020-10-28 01:48:06
1、单选题 完成某项工程,甲单独工作需要18小时,乙需要24小时,丙需要30小时。现按甲、乙、丙的顺序轮班工作,每人工作一小时换班。当工程完工时,乙总共干了多少小时?_____
A: 8小时
B: 7小时44分
C: 7小时
D: 6小时48分
参考答案: B
本题解释:正确答案是B考点工程问题解析解析1:设工程总量为360,则甲乙丙的工作效率分别为20、15、12,三人每小时工作总量为47。由题意可知三人轮班即为循环周期问题,用360除以47商7余数为31,甲乙丙轮班每人7小时后,乙继续工作的工作量为31-20=11。所以最终乙总共干了:7小时+11/15×60分=7小时44分,故正确答案为B。解析2:设工程总量为360,则甲乙丙的工作效率分别为20、15、12,甲每小时比乙多干5,乙每小时比丙多干3,因此乙工作时间必定小于24/3=8小时。观察选项有6小时、7小时和8小时,可选7为参考点,甲乙丙轮班每人工作7小时共完成:(20+15+12)×7=329<360,因此乙工作时间在7小时和8小时之间,故正确答案为B。标签赋值思想
2、单选题 某高校组织了篮球比赛。其中机械学院队、外语学院队、材料学院队和管理学院队被分在同一个小组,每两队之间进行一场比赛且无平局。结果机械学院队赢了管理学院队,且机械学院队、外语学院队和材料学院队胜利的场数相同,则管理学院队胜了多少场?_____
A: 3
B: 2
C: 1
参考答案: D
本题解释:正确答案是D,全站数据:本题共被作答1次,正确率为100.00%解析首先按照排列组合的知识,4支队伍两两比赛,应该一共需要进行C(2,4)=6场比赛。由于机械、外语、材料三个学院胜利的场次一样,且不能为0(因为机械赢了管理,所以至少赢1场以上),所以三个学院只能胜1或2场。如果三个学院都仅胜1场,则余下的管理学院需要胜3场(即不败),与题干相冲突。所以三个学院只能都胜2场,管理学院胜0场,满足条件。故正确答案为D。速解本题属于排列组合的知识作为限制条件,核心解题技巧是从关键信息出发,通过假设法排除错误选项。考点排列组合问题笔记编辑笔记
3、单选题 有62名学生,会击剑的有11人,会游泳的有56人,两种都不会的有4人,问两种都会的学生有多少人?_____
A: 1人
B: 5人
C: 7人
D: 9人
参考答案: D
本题解释:正确答案是D考点容斥原理问题解析由两集合容斥原理公式得两种都会的有56+11-(62-4)=9人。故正确答案为D。两集合容斥原理公式:|A∪B|=|A|+|B|﹣|A∩B|。标签两集合容斥原理公式
4、单选题 小明和小强参加同一次考试,如果小明答对的题目占题目总数的3/4,小强答对了27道题,他们两人都答对的题目占题目总数的2/3,那么两人都没有答对的题目共有_____。
A: 3道
B: 4道
C: 5道
D: 6道
参考答案: D
本题解释:正确答案是D考点容斥原理问题解析由“小明答对的题目占题目总数的3/4”,可知题目总数是4的倍数;由“他们两人都答对的题目占题目总数2/3”,可知题目总数是3的倍数。因此,题目总数是12的倍数。小强做对了27题,超过题目总数的2/3,则题目总数是36。根据两集合容斥原理公式得两人都没有答对的题目共有36-(36×3/4+27-36×2/3)=6道,故正确答案为D。
5、单选题 甲、乙、丙三个工程队的效率比为6:5:4,现将A、B两项工作量相同的工程交给这三个工程队,甲队负责A工程,乙队负责B工程,丙队参与A工程若干天后转而参与B工程。两项工程同时开工,耗时16天同时结束,问丙队在A工程中参与施工多少天?_____
A: 6
B: 7
C: 8
D: 9
参考答案: A
本题解释:正确答案是A考点工程问题解析解析1:根据题目给出的效率比,直接赋值三个工程队的效率分别为6、5、4,并假设丙队参与A工程Y天,则根据题意可得6×16+4Y=5×16+4(16-Y),解得Y=6。故正确答案为A。解析2:根据题目中的效率比,直接赋值三个工程队的效率分别为6、5、4,将两工程合在一起看整体,则三个工程队一天的工作量为6+5+4=15,则16天的总工作量为15×16=240,于是A工程的工作量为120,其中甲完成了6×16=96,则丙需要参与(120-96)÷4=6天。故正确答案为A。秒杀技秒杀1:将效率比看做份数,甲比乙每天多1份,16天则多16份,而丙一天完成4份,因此完成这16份需要4天,也即丙参与A工程比参与B工程少4天,于是参与A工程的天数为(16-4)÷2=6天。故正确答案为A。秒杀2:由题意甲效率高于乙效率,因此丙必然在甲中参与天数少于16天的一半,也即答案只在A、B中选择,这两个选项中,优先考虑代入A选项验证,符合条件,故正确答案为A。标签直接代入赋值思想