时间:2020-10-21 23:36:46
1、单选题 在400米环形跑道上,A、B两点相距100米。甲、乙两人分别从A、B两点同时出发,按逆时针方向跑步。甲每秒跑5米,乙每秒跑4米。每人每跑100米,都要停10秒。那么,甲追上乙需要的时间是_____秒。
A: 80
B: 100
C: 120
D: 140
参考答案: D
本题解释:【答案解析】假设甲、乙都不停地跑,那么甲追上乙的时间是100÷(5-4)=100(秒)。甲、乙每跑100米停10秒,等于甲跑20秒(100÷5)休息10秒,乙跑25秒(100÷4)休息10秒。跑100秒甲要停4次(100÷20-1),共用140秒(100+10×4),此时甲已跑的路程为500米。在第130秒时乙已跑路程为400米(他此时已休息3次,花去30秒),并在该处休息到第140秒,甲刚好在乙准备动身时赶到,他们碰到一块了。所以,甲追上乙需要的时间是140秒。故选D。
2、单选题 一条街上,一个骑车人和一个步行人相向而行,骑车人的速度是步行人的3倍,每个隔10分钟有一辆公交车超过一个行人。每个隔20分钟有一辆公交车超过一个骑车人,如果公交车从始发站每隔相同的时间发一辆车,那么间隔几分钟发一辆公交车? _____
A: 10
B: 8
C: 6
D: 4
参考答案: B
本题解释:B。【解析】设车速V车,人速V人,自行车速3V人,则(V车-V人)×10=20×(V车-3V人),V车=5V人,即车走人4倍位移追上人故T=4×V人×10/5V人=8。
3、单选题 六年级某班学生中有1/16的学生年龄为13岁,有3/4的学生年龄为12岁,其余学生年龄为11岁,这个班的平均年龄是:_____
A: 10.02
B: 11.17
C: 11.875
D: 11.675
参考答案: C
本题解释:参考答案:C
题目详解:应用方程法:设这个班的人数是x人,则这个班的平均年龄为:
4、单选题 箱子中有编号1—10的10个小球,每次从中抽出一个记下编号后放回,如果重复3次,则3次记下的小球编号乘积是5的倍数的概率是多少?_____
A: 43.2%
B: 48.8%
C: 51.2%
D: 56.8%
参考答案: B
本题解释:正确答案是B考点概率问题解析若3次记下的小球编号乘积是5的倍数,则至少有一次需要抽到5或10。其反面是一次5或10都没有抽到,这种情况的概率为0.8×0.8×0.8=0.512。故3次记下的小球编号乘积是5的倍数的概率为1-51.2%=48.8%。故正确答案为B。
5、单选题 甲、乙、丙三种货物,如果购买甲3件、乙7件、丙1件需花3.15元,如果购买甲4件、乙10件、丙1件需花4.2元,那么购买甲、乙、丙各1件需花多少钱?_____
A: 1.05
B: 1.4
C: 1.85
D: 2.1
参考答案: A
本题解释:正确答案是A考点不定方程问题解析甲×3+乙×7+丙×1=3.15……①甲×4+乙×10+丙×1=4.20……②这是不定方程组,无法解得每个未知数的具体值。换言之,未知数的解存在无穷多个,而题目中四个选项均为确定数值,所以未知数的具体值为多少并不影响甲+乙+丙的值,也即只需要求出其中一组解即可。对此,可以设定最复杂的那个为0,即乙=0,代入后解二元一次方程组,解得甲=1.05,丙=0,即可得甲+乙+丙=1.05。故正确答案为A。秒杀技①×3-②×2可得:甲+乙+丙=3.15×3-4.20×2=1.05。故正确答案为A。