时间:2020-05-24 03:13:30
1、单选题 三位数的自然数N满足:除以6余3,除以5余3,除以4也余3,则符合条件的自然数N有几个?_____
A: 8
B: 9
C: 15
D: 16
参考答案: C
本题解释:正确答案是C考点余数与同余问题解析由题意可知满足同余情形,例如此题”三位自然数N除以6余3,除以5余3,除以4也余3”,可见余数恒为3,则取3,因此N的表达式为60n+3,其中60为6、5、4的最小公倍数,根据题目中的N为三位数,可得不等式100≤60n+3≤999,解得2≤n≤16,因此符合条件的自然数有15个,故正确答案为C选项。注:同余问题需要如下口诀:余同取余,和同加和,差同减差,最小公倍数做周期。口诀解释:余同取余,例如本题,余数恒为3,则取3;合同加和,例如”一个数除以7余1,除以6余2,除以5余3”,可见除数与余数的和相同,取此和8,被除数的表达式为210n+8;差同减差,例如”一个数除以7余3,除以6余2,除以5余1”。可见除数和余数的差相同,取此差4,被除数的表达式为210-4,其中210为5、6、7的最小公倍数。秒杀技根据题目,符合要求的数出现的周期为6、5、4的最小公倍数60,也即每60个连续自然数中必然有一个符合要求,三位数共有900个,因此符合要求的三位数共有900÷60=15(个),故正确答案为C选项。标签最小公倍数同余问题
2、单选题 有一个矩形花园,长比宽多30米,现在花园的四周铺等宽的环路。已知路的面积是800M2,路的外周长是180m,问路宽是多少米?_____
A: 4
B: 5
C: 6
D: 3
参考答案: B
本题解释:【答案】B。解析:设小矩形的宽是x,则长是x+30;设路宽是y,则大矩形的宽是x+2,大矩形的长是x+30+2y,已知条件可表示为(x+2y)(x+30+27)-x(x+30)=800和2(x+2y+x+30+2y)=180,解得y=5米。
3、单选题 A、B、C、D、E是5个不同的整数,两两相加的和共有8个不同的数值,分别是17、25、28、31、34、39、42、45,则这5个数中能被6整除的有几个?_____
A: 4
B: 1
C: 2
D: 3
参考答案: C
本题解释:正确答案是C考点趣味数学问题解析设A<B<C<D<E,则必有A+B=17,A+C=25,C+E=42,D+E=45。两两相加,应该有10个数值,因此必有两个重复值。这10个数值相加,必为4的倍数,将题中8个数值相加得261,除以4余1,因此另外两个加和必然除以4余3,重复的两个数在28、31、34、39中,因此这两个数为28、39或28、31,28必为重复值,可知B+C=A+D=28,所以,A=7,B=10,C=18,D=21,E=24,能被6整除的有18、24两个。故正确答案为C。
4、单选题 某企业有甲、乙、丙三个仓库,且都在一条直线上,之间分别相距1千米、3千米,三个仓库里面分别存放货物5吨、4吨、2吨。如果把所有的货物集中到一个仓库,每吨货物每千米运费是90元,请问把货物放在哪个仓库最省钱?_____
A: 甲
B: 乙
C: 丙
D: 甲或乙
参考答案: B
本题解释:B解析:此题遵循“小往大处靠”原则,先把2吨的货物移动到4吨那,这样就相当于有了6吨货物,然后在把5吨的货物也移动到6吨,综上所述,运到乙仓库最省钱。
5、单选题 现有边长1米的一个木质正方体,已知将其放入水里,将有0.6米浸入水中。如果将其分割成边长0.25米的小正方体,并将所有的小正方体都放入水中,直接和水接触的表面积总量为_____。
A: 3.4平方米
B: 9.6平方米
C: 13.6平方米
D: 16平方米
参考答案: C
本题解释:正确答案是C考点几何问题解析