时间:2020-05-24 00:57:33
1、单选题 如右图所示,△ABC是等腰直角三角形,AB=12,AD的长度是CD的2倍,四边形EBCD与△AED的面积之比为3:2,AE的长度是_____。
A: 6.9
B: 7.1
C: 7.2
D: 7.4
参考答案: C
本题解释:正确答案是C考点几何问题解析四边形EBCD与三角形AED的面积之比为3:2,则三角形ABC与三角形AED的面积之比为5:2。已知AD的长度是CD的2倍,则AD的长度是AC的2/3。作DF垂直AB于点F,则DF=2/3BC(相似三角形原理),三角形ABC的面积=1/2×AB×BC,三角形AED的面积=1/2×AE×DF=1/2×AE×2/3BC代入之前的比例式,可得AE=3/5AB=36/5=7.2。所以正确答案为C。
2、单选题 一个车队有三辆汽车,担负着五家工厂的运输任务,这五家工厂分别需要7、9、4、10、6名装卸工,共计36名;如果安排一部分装卸工跟车装卸,则不需要那么多装卸工,而只需要在装卸任务较多的工厂再安排一些装卸工就能完成装卸任务,那么在这种情况下,总共至少需要_____名装卸工才能保证各厂的装卸需求。
A: 26
B: 27
C: 28
D: 29
参考答案: A
本题解释:正确答案是A考点统筹规划问题解析设三辆汽车分别为甲、乙、丙车;五个工厂分别为A、B、C、D、E厂,则最初状态甲、乙、丙三车上人数为0,五工厂分别有人7、9、4、10、6人。我们在五个工厂都减少1名装卸工时,五工厂共减少5人,而每辆车上的人数各增加1人,车上共增加3人,所以装卸工的总人数减少2人。当车上增加到4人,C厂剩余的人数为0,此时每辆车上的人数每增加1人,车上共增加3人,而五工厂共减少4人,所以装卸工的总人数仍减少。当车上增加到6人,C、E厂剩余的人数为0,此时每车上的人数每增加1人,车上共增加3人,而五工厂共减少3人,所以装卸工的总人数不变。当车上增加到7人,A、C、E厂剩余的人数为0,此时每辆车上的人数如果再每增加1人,车上共增加3人,而五工厂共减少2人,所以装卸工的总人数增加。所以当车上的人数为6人(或7人)的时候,装卸工的总人数最少。如果每个车上有6个人,A、B、C、D、E厂剩余人数分别为1、3、0、4、0,三辆车上共有18人,总共需装卸工26人。如果每个车上有7个人,A、B、C、D、E厂剩余人数分别为0、2、0、3、0,三辆车上共有21人,总共也需装卸工26人。故正确答案为A。注释:有M家汽车负担N家工厂的运输任务,当M<N时,只需把装卸工最多的前M家工厂的人数加起来即可;当M≥N时,只需把各个工厂的人数相加即可。
3、单选题 某单位有52人投票,从甲、乙、丙三人中选出一名先进工作者。在计票过程中的某时刻,甲得17票,乙得16票,丙得11票,如果规定得票比其他两人都多的候选人才能当选。那么甲要确保当选,最少要再得票_____。
A: 1张
B: 2张
C: 3张
D: 4张
参考答案: D
本题解释:正确答案是D考点抽屉原理问题解析解析1:整体考虑,乙对甲威胁最大,甲乙共可以分52-11=41张选票,甲乙均得到20张时,甲仍然保证不了能当选,再得剩下的1张选票,即甲得到21张选票时,保证当选,所以还需要21-17=4张,选D。解析2:还剩下52-17-16-11=8张票。甲如果要确保当选,则考虑最差情况,剩下的票丙一票不拿,那么只有甲乙分配剩下的票,甲至少要拿8÷2=4张才能保证当选,故正确答案为D。解析3:已统计选票17+16+11=44,剩余52-44=8票。这里对甲最大的威胁是乙,设甲再得票x,乙再得票(8-x),令17+x=16+(8-x),由此推出,x=3.5,x最小是3.5,满足条件的整数取4,故正确答案为D。
4、单选题 把自然数1,2,3,4,5,……,98,99分成三组,如果每组数的平均数刚好相等,那么此平均数为_____。
A: 55
B: 60
C: 45
D: 50
参考答案: D
本题解释:正确答案是D考点数列问题解析每组平均数相等,那么这个数就是全体的平均数,而平均数即为中位数,且相等于首项与末项之和的一半,口算知为50。故正确答案为D。标签整体考虑
5、单选题
A: 3
B: 4
C: 5
D: 6
参考答案: C
本题解释:正确答案是C考点计算问题解析