时间:2020-05-24 00:16:34
1、单选题 如右图所示,△ABC是等腰直角三角形,AB=12,AD的长度是CD的2倍,四边形EBCD与△AED的面积之比为3:2,AE的长度是_____。
A: 6.9
B: 7.1
C: 7.2
D: 7.4
参考答案: C
本题解释:正确答案是C考点几何问题解析四边形EBCD与三角形AED的面积之比为3:2,则三角形ABC与三角形AED的面积之比为5:2。已知AD的长度是CD的2倍,则AD的长度是AC的2/3。作DF垂直AB于点F,则DF=2/3BC(相似三角形原理),三角形ABC的面积=1/2×AB×BC,三角形AED的面积=1/2×AE×DF=1/2×AE×2/3BC代入之前的比例式,可得AE=3/5AB=36/5=7.2。所以正确答案为C。
2、单选题 某蓄水池有一进水口A和一出水口B,池中无水时,打开A口关闭B口,加满整个蓄水池需2小时;池中满水时,打开B口关闭A口,放干池中水需1小时30分钟。现池中有占总容量1/3的水,问同时打开A、B口,需多长时间才能把蓄水池放干?_____
A: 90分钟
B: 100分钟
C: 110分钟
D: 120分钟
参考答案: D
本题解释:正确答案是D考点工程问题解析设水池中的水总量是3,那么A口一小时加1.5的量,B口一小时排2的量。因此两口同开,一小时排0.5的量。现在水池里有3×1/3=1的量,所以需要2小时。因此正确答案为D。
3、单选题 某单位有78个人,站成一排,从左向右数,小王是第50个,从右向左数,小张是第48个,则小王小张之间有多少人?_____
A: 16
B: 17
C: 18
D: 20
参考答案: C
本题解释:正确答案是C考点容斥原理问题解析解析1:因为从左向右数,小王是第50个,所以小王左边有49人,从右向左数,小张是第48个,所以小张左边有78-48=30人,所以两人之间有49-30-1=18人。故正确答案为C。解析2:
4、单选题 有十名学生参加某次数学竞赛,已知前八名的平均成绩是90分,第九名比第十名多2分,所有学生的平均成绩是87分。问第九名学生的数学成绩是几分?_____
A: 70
B: 72
C: 74
D: 76
参考答案: D
本题解释:正确答案是D解析第九名和第十名的成绩和为87×10-90×8=150,第九名比第十名多2分,所以第九名的分数=(150+2)÷2=76(分),故正确答案为D。平均数问题
5、单选题 某商场以摸奖的方式回馈顾客,盒内有五个乒乓球,其中一个为红色,2个为黄色,2个为白色,每位顾客从中任意摸出一个球,摸到红球奖10元,黄球奖1元,白球无奖励,则每一位顾客所获奖励的期望值为多少?_____
A: 10
B: 1.2
C: 2
D: 2.4
参考答案: D
本题解释:正确答案是D考点概率问题解析根据已知,每一位顾客所获奖励的期望值为10×1/5+1×2/5=2.4,故正确答案为D。