时间:2020-04-09 22:20:52
1、单选题 对厦门大学计算机系100名学生进行调查,结果发现他们喜欢看NBA和足球、赛车。其中58人喜欢看NBA;38人喜欢看赛车,52人喜欢看足球,既喜欢看NBA又喜欢看赛车的有18人,既喜欢看足球又喜欢看赛车的有16人,三种都喜欢看的有12人,则只喜欢看足球的有_____。
A: 22人
B: 28人
C: 30人
D: 36人
参考答案: A
本题解释:正确答案是A考点容斥原理问题解析
2、单选题 从一副完整的扑克牌中至少抽出_____张牌,才能保证至少有5张牌的花色相同。
A: 17
B: 18
C: 19
D: 20
参考答案: C
本题解释:正确答案是C考点抽屉原理问题解析一副完整的扑克牌包括四种花色的A到K,共有4×13=52张以及2张大小王。要保证5张牌花色相同,根据抽屉原理,此时的"最不利"情形是每一种花色恰好不到5张,即红桃、方块、黑桃、梅花各抽出4张,且抽中了2张大小王,共计4×4﹢2=18张;最后抽出1张任意花色的牌,则可保证有5张花色相同。所以至少需要抽出18﹢1=19张牌,正确答案选C。
3、单选题 已知盐水若干千克,第一次加入一定量的水后,盐水浓度变为6%,第二次加入同样多的水后,盐水浓度变为4%,第三次再加入同样多的水后盐水浓度是_____。
A: 3%
B: 2.5%
C: 2%
D: 1.8%
参考答案: A
本题解释:正确答案是A考点浓度问题解析赋值盐量为12,则根据第一次加入水后的浓度为6%知此时盐水总量200;第二次加水后浓度为4%可知此时盐水总量为300。因此每次加水量为300-200=100。由此可知第三次加入同样多的水后盐水总量为400,因此浓度为3%。故正确答案为A。标签赋值思想
4、单选题 某单位举办象棋比赛,规则为胜一场得4分,负一场得-1分,平一场不得分,一轮比赛中参赛人员100人,两两配对后分别比赛,所有人总得分为126分,为该轮比赛中平局有多少场?_____
A: 4
B: 8
C: 12
D: 16
参考答案: B
本题解释:正确答案是B考点鸡兔同笼问题解析若分出胜负,则该场比赛合计得分为4-1=3分;若平局,则合计得分为0分。假设全部分出胜负,则可得3×50=150分,实际得到126分,则可得平局场次为(150-126)÷(3-0)=8场。故正确答案为B。
5、单选题 甲乙两个工厂的平均技术人员比例为45%,其中甲厂的人数比乙厂多12.5%,技术人员的人数比乙厂的多25%,非技术人员人数比乙厂多6人。甲乙两厂共有多少人?_____
A: 680
B: 840
C: 960
D: 1020
参考答案: A
本题解释:正确答案是A考点和差倍比问题解析由题干中"甲厂人数比乙厂多12.5%"可知甲、乙两厂总人数之比为9:8,则可假设甲厂总人数有9n,乙厂总人数有8n,甲乙总人数为17n,故总人数一定能被17整除,排除选项B、C;在A和D之间选择,直接代入A选项,则有680=17n,n=40,则甲厂共360人,乙厂共320人,两厂的技术人员总数为680×45%=306人,甲厂技术人员有170人,非技术人员为190人,乙厂有技术人员136人,非技术人员184人,甲乙两厂的非技术人员相差190-184=6人,满足题意,验证成立。故正确答案为A。标签直接代入数字特性