时间:2019-06-26 04:45:41
1、选择题 如图,带电平行金属板中匀强电场方向竖直上,匀强磁场方向垂直纸面向里,带电小球从光滑绝缘轨道上的a点由静止滑下,经过1/4圆弧轨道从端点P(切线水平)进入板间后恰好沿水平方向做直线运动,现使带电小球从比a点稍低的b点由静止滑下,在经过P点进入板间的运动过程中
[? ]
A.带电小球的动能将会增大
B.带电小球的电势能将会增大
C.带电小球所受洛伦兹力将会减小
D.带电小球所受电场力将会增大
参考答案:AB
本题解析:
本题难度:一般
2、计算题 在如图甲所示的平面直角坐标系xOy中,存在沿x方向按如图乙所示规律周期性变化的匀强电场,沿x轴正方向为正。沿垂直于xOy平面指向纸里的方向存在按如图丙所示规律周期性变化的匀强磁场。在图甲中坐标原点O处有带正电的粒子,从t=0时刻无初速度释放。已知粒子的质量m=5×10-10kg,电荷量q=1×10-6C,不计粒子的重力。求:
(1)t=0.25×10-3s时粒子的速度及位置;
(2)t=1×10-3s时粒子的位置坐标;
(3)t=8×10-3s时粒子的速度。


参考答案:解:(1)在第一个t0=0.25×10-3s内粒子的加速度a满足:qE=ma
末速度v1=at0=5m/s
沿x轴正向运动L1=
t0=6.25×10-4m
(2)在0.25×10-3~0.5×10-3s内粒子做匀速圆周运动
T=
=0.5 ×10-3s
故粒子在0.25×10-3s这段时间内运动了半个圆周
圆周运动的半径R1=
在0.5×10-3~0.75×10-3s内粒子沿x轴负向匀加速运动
末速度大小v2=v1+at0=2v1
位移大小L2=
t0=3L1
在0.75×10-3~1×10-3s内粒子做匀速圆周运动
R2=
=2R1
末位置坐标:x=-(L2-L1)=-1.25×10-3m
y=-(2R2-2R1)=-8 ×10-4m。
(3)粒子在8×10-3s内16次加速,每次速度增加v1,故:v=16v1,v=80m/s
方向沿x轴正向
本题解析:
本题难度:困难
3、选择题 如图所示,质量为m电量为q的带正电物体,在磁感强度为B、方向直纸面向里的匀强磁场中,沿动摩檫因数为μ的水平面向左运动,则( )
A.物体的速度由v减小到零所用的时间等于
| mv μ(mg+qvB) |
| mv μ(mg+qvB) |
| μ(mg+qvB) q |
| (mg+qvB) q |

参考答案:A、B、对物体受力分析,受重力、支持力,洛伦兹力和滑动摩擦力;根据左手定则,洛伦兹力向下,合力向后,物体做减速运动;由于摩擦力f=μ(mg+qvtB),不断减小,加速度不断减小,不是匀变速运动,故物体的速度由v减小到零所用的时间大于mvμ(mg+qvB),故A错误,B也错误;
C、若另加一个电场强度为μ(mg+qvB)q、方向水平向左的匀强电场,电场力F=qE=μ(mg+qvB)=f,物体受力平衡,做匀速直线运动,故C正确;
D、若另加一个电场强度为(mg+qvB)q、方向竖直向上的匀强电场,电场力F=qE=mg+qvB,支持力为零,故摩擦力为零,物体做匀速直线运动,故D正确;
故选CD.
本题解析:
本题难度:简单
4、选择题 如图所示,竖直放置足够长的平行光滑导轨间距d=lm、其电阻不计,磁感应强度B=1T、方向垂直纸面向里,匀质导体棒AB长L=2m、电阻r=1Ω、质量为m=0.lKg;电阻R1=R2=1Ω,现让棒AB由静止释放(与导轨接触良好).下降到虚线位置时达到最大速度,下列说法正确的是(g= 10m/s2)
A.棒AB的最大速度为1m/s
B.通过R1的最大电流为lA
C.闭合回路的路端电压是0.5v
D.棒AB最大电功率为1W
参考答案:ACD
本题解析:导体棒速度最大时重力等于洛伦兹力,
,
,通过R1最大电流0.5A,闭合回路的路端电压
,棒AB最大功率
,所以选ACD。
本题难度:简单
5、计算题 如图所示,一条长为L的绝缘细线上端固定,下端拴一质量为m的带电小球,将它置于水平方向的匀强电场中,电场强度为E,已知当细线与竖直方向的夹角为α时,小球处于平衡位置A点,问在平衡位置给小球多大的速度vA,刚好能使之在电场中作竖直平面内的完整圆周运动?
参考答案:
本题解析:
为临界条件,所以有:
从A点到B点过程,仅重力、电场力对小球做功,由动能定理得:
联立以上各式解得:
本题难度:一般