时间:2018-10-11 00:37:20
1、计算题 如图所示,直角坐标系xOy位于竖直平面内,在水平的x轴下方存在匀强磁场和匀强电场,磁场的磁感应为B,方向垂直xOy平面向里,电场线平行于y轴。一质量为m、电荷量为q的带正电的小球,从y轴上的A点水平向右抛出,经x轴上的M点进入电场和磁场,恰能做匀速圆周运动,从x轴上的N点第一次离开电场和磁场,MN之间的距离为L,小球过M点时的速度方向与x轴的方向夹角为θ。不计空气阻力,重力加速度为g,求
(1)电场强度E的大小和方向;
(2)小球从A点抛出时初速度v0的大小;
(3)A点到x轴的高度h。
2、计算题 如图所示,在xOy平面直角坐标系的第一象限有射线OA,OA与x轴正方向夹角为30°,OA与y轴所夹区域内有沿y轴负方向的匀强电场E1,第二象限存在水平向右的匀强电场E2,其它区域存在垂直于坐标平面向外的匀强磁场.有一质量为m、电荷量为q的带正电粒子,从y轴上的P点沿着x轴正方向以初速度v0射入电场,运动一段时间后经过Q点垂直于射线OA进入磁场,经磁场垂直x轴进入偏转电场E2,过y轴正半轴上的P点再次进入匀强电场E1,已知OP=h,不计粒子重力,求:
(1)粒子经过Q点时的速度大小;
(2)匀强电场电场强度E1的大小;
(3)粒子从Q点运动到P点所用的时间.
3、选择题 如图所示,粗糙的平行金属导轨倾斜放置,导轨间距l=1m,导轨电阻不计,顶端QQ′之间连接一个阻值为R=1.5Ω的电阻和开关S,底端PP′处有一小段水平轨道相连,匀强磁场B垂直于导轨平面。断开开关S,将一根电阻不计质量为m=4kg的金属棒从AA′处由静止开始滑下,落在水平面上的FF′处;闭合开关S,将金属棒仍从AA′处由静止开始滑下,落在水平面上的EE′处;开关S仍闭合,金属棒从另一位置CC′处由静止开始滑下,仍落在水平面上的EE′处。(忽略金属棒经过PP′处的能量损失,金属棒始终与导轨垂直接触良好)测得相关数据为s=2m,h=5m,x1=2m,x2=1.5m,下列说法正确的是(?)
A.S断开时,金属棒沿斜面下滑的加速度为1m/s2
B.CC′一定在AA′的上方
C.B=2T
D.从AA'处释放时,电阻R上产生的热量为3.5J
4、计算题 (16分)如图甲所示,两水平放置的平行金属板A、B的板长,板间距离d=0.10m,在金属板右侧有一范围足够大,方向垂直于纸面向里的匀强磁场,磁感应强度B=1.0×10-2T,其左边界为y轴.在t=0时刻,两金属板间加如图乙所示的正弦交变电压.现从t=0开始,位于极板左侧的粒子源沿x轴向右以1000个/秒的数量连续均匀发射带正电的粒子,粒子均以
的初速度沿x轴进入电场,经电场后部分粒子射入磁场.已知带电粒子的比荷
,粒子通过电场区域的极短时间内,极板间的电压可以看作不变,不计粒子重力,不考虑极板边缘及粒子间相互影响.试求:
(1)t=0时刻进入的粒子,经边界y轴射入磁场和射出磁场时两点间的距离;
(2)每秒钟有多少个粒子进入磁场;
(3)何时刻由粒子源进入的带电粒子在磁场中运动时间最长,求最长时间tm(π≈3).
5、计算题 如图(甲)所示,在直角坐标系0≤x≤L区域内有沿y轴正方向的匀强电场,右侧有一个以点(3L,0)为圆心、半径为L的圆形区域,圆形区域与x轴的交点分别为M、N。现有一质量为m、带电量为e的电子,从y轴上的A点以速度v0沿x轴正方向射入电场,飞出电场后从M点进入圆形区域,速度方向与x轴夹角为30°。此时在圆形区域加如图(乙)所示周期性变化的磁场,以垂直于纸面向外为磁场正方向),最后电子运动一段时间后从N点飞出,速度方向与进入磁场时的速度方向相同(与x轴夹角也为30°)。求:
⑴ 电子进入圆形磁场区域时的速度大小;
⑵ 0≤x≤L区域内匀强电场场强E的大小;
⑶ 写出圆形磁场区域磁感应强度B0的大小、磁场变化周期T各应满足的表达式。