时间:2018-03-18 09:56:38
1、选择题 如图所示,两竖直平行板间同时存在匀强电场和匀强磁场,电场的场强为E、方向水平向左,磁场的磁感应强度为B、方向与电场垂直且水平向里.一带点液滴以竖直向下的初速度v0=
E B |
2、计算题 如图所示,在直角坐标系的原点O处有一放射源,向四周均匀发射速度大小相等、方向都平行于纸面的带电粒子。在放射源右边有一很薄的挡板,挡板与xoy平面交线的两端M、N与原点O正好构成等腰直角三角形。已知带电粒子的质量为m,带电量为+q,速度为υ,MN的长度为L。
(1)若在y轴右侧加一平行于x轴的匀强电场,要使y轴右侧所有运动的粒子都能打到挡板MN上,则电场强度E0的最小值为多大?在电场强度为E0时,打到板上的粒子动能为多大?
(2)若在整个空间加一方向垂直纸面向里的匀强磁场,要使板右侧的MN连线上都有粒子打到,磁场的磁感应强度不能超过多少(用m、υ、q、L表示)?若满足此条件,放射源O向外发射出的所有带电粒子中有几分之几能打在板的左边?
3、计算题 如图所示,在坐标系xOy内有一半径为a的圆形区域,圆心坐标为O1(a,0),圆内分布有垂直纸面向里的匀强磁场。在直线y=a的上方和直线x=2a的左侧区域内,有一沿y轴负方向的匀强电场,场强大小为E。一质量为m、电荷量为+q(q>0)的粒子以速度v从O点垂直于磁场方向射入,当速度方向沿x轴正方向时,粒子恰好从O1点正上方的A点射出磁场,不计粒子重力。
(1)求磁感应强度B的大小;
(2)若粒子以速度v从O点垂直于磁场方向射入第一象限,当速度方向沿x轴正方向的夹角=30°时,求粒子从射入磁场到最终离开磁场的时间t。
4、实验题 如图所示,在直角坐标系O-xyz中存在磁感应强度为、方向竖直向下的匀强磁场,在(0,0,h)处固定一电量为+q(q>0)的点电荷,在xOy平面内有一质量为m(m未知),电量为-q的微粒绕原点O沿图示方向作匀速圆周运动。若微粒的圆周运动可以等效为环形电流,求:
(1)若已知+q与-q的连线与z轴的夹角θ和静电力常量k,则此微粒所受的库仑力多大
(2)此微粒作匀速圆周运动的角速度ω;
(3)等效环形电流的电流强度I(已知重力加速度为g)。
5、计算题 如图所示,在XOY直角坐标系中,OQ与OP分别与X轴正负方向成450,在POQ区域中存在足够大的匀强电场,场强大小为E,其余区域存在匀强磁场,一带电量为+q的质量为m粒子在Y轴上A点(0,-L)以平行于X轴速度v0进入第四象项,在QO边界垂直进入电场,后又从PO边界离开电场,不计粒子的重力.
求(1)匀强磁场的磁感应强度大小?
(2)粒子从PO进入磁场的位置坐标?