村官考试行测常考点-【数学运算】大全(二)

时间:2016-06-23 07:31:13

微信搜索关注"91考试网"公众号,领30元,获取事业编教师公务员等考试资料40G

1、有一个长方体容器,长40厘米,宽30厘米,高10厘米,里面的水深6厘米(最大面为底面)。如果把这个容器盖紧,再竖起来(最小面为底面),则里面的水深是多少厘米_____
A: 15厘米 B: 18厘米 C: 24厘米 D: 30厘米
参考答案: C 本题解释:【解析】C。盖紧后竖起前水的底面积为40×30平方厘米,深为6厘米,则体积为40×30×6立方厘米。盖紧后竖起水的体积不变,底面积变成了30×10平方厘米,此时水深应为



2、某儿童艺术培训中心有5名钢琴教师和6名拉丁舞教师,培训中心将所有的钢琴学员和拉丁舞学员共76人分剐平均地分给各个老师带领,刚好能够分完,且每位老师所带的学生数量都是质数。后来由于学生人数减少,培训中心只保留了4名钢琴教师和3名拉丁舞教师,但每名教师所带的学生数量不变,那么目前培训中心还剩下学员多少人?_____
A: 36B: 37C: 39D: 41
参考答案: D 本题解释:【答案】D。解析:假定每个钢琴教师带x个学生,每个拉丁舞教师带y个学生,则根据题意有:5x+6y=76。根据此方程,可知x必为偶数,而x与y均为质数,因此x=2,代回可得y=11。于是在学生人数减少后,还剩下学员为4×2+3×11=41个,故正确答案为D。



3、用10张同样长的纸条粘接成一条长61厘米的纸条,如果每个接头处都重叠1厘米,那么每张纸条长_____厘米。
A: 7 B: 6.9 C: 6.1 D: 7.1
参考答案: A 本题解释:A。设每张纸条长a厘米,每个接头重叠1厘米,则10张纸条共有9个接头,即9厘米,列出方程为10a-9=61,解得方程为a=7厘米,所以正确答案为A项。



4、某村有甲乙两个生产小组,总共50人,其中青年人共13人。甲组中青年人与老年人的比例是2∶3,乙组中青年人与老年人的比例是1∶5,甲组中青年人的人数是:_____
A: 5人B: 6人C: 8人D: 12人
参考答案: C 本题解释:【答案】C。解析:设甲组人数为5x,乙组人数为6y。有,解得x=4。因此甲组青年人的人数为8。



5、下列关于日常生活的说法,不正确的是_____。
A: 将装有苏打的盒子敞口放在冰箱里可以除异味B: 医用消毒酒精的浓度为75%C: “坐井观天,所见甚小”是由于光沿直线传播D: 若电脑着火,即使关掉主机、拔下插头,也不可向电脑泼水
参考答案: A 本题解释:可以除异味的是小苏打碳酸氢钠;苏打是碳酸钠,A选项说法错误。医用酒精浓度有75%和95%,95%的酒精常用擦拭紫外线灯;75%的酒精常用消毒,故B项正确。“坐井观天,所见甚小”,因为光是沿直线传播的,光线以井为界线传播进来,井外的光线被挡住不能传播进来,故光线进入眼睛就有限,看见的事物就很小,故C项正确。若电脑着火,泼水后电脑的温度突然降下来,会使炽热的显像管爆裂。此外,电脑内仍有剩余电流,泼水可能引起触电,故D项正确。本题答案为A。



6、人工生产某种装饰用珠链,每条珠链需要珠子25颗,丝线3条,搭扣1对,以及10分钟的单个人工劳动。现有珠子4880颗,丝线586条,搭扣200对,4个工人。则8小时最多可以生产珠链_____。
A: 200条B: 195条C: 193条D: 192条
参考答案: D 本题解释:答案:D。4个工人8小时的人工劳动是1920分,而10分钟的单个人工劳动生产一条珠链,故可生产1920÷10=192(条)。



7、某人在公共汽车上发现一个小偷向相反方向步行,10秒钟后他下车去追小偷,如果他的速度比小偷快一倍,比汽车慢,则此人追上小偷需要_____。
A: 20秒B: 50秒C: 95秒D: 110秒
参考答案: D 本题解释:D【解析】设某人速度为v,则小偷速为0.5v,汽车速为5v,10秒钟内,与小偷相差(0.5+5)v×10=55v,追求时速差为0.5v,所以所需时间为110秒。



8、学习委员收买练习本的钱,她只记下四组各交的钱,第一组2.61元,第二组3.19元,第三组2.61元.第四组3.48元,又知道每本练习本价格都超过1角,全班共有多少人?_____
A: 29B: 33C: 37D: 41
参考答案: D 本题解释:D。把所有的钱换算成以分为单位的即可。只需要找到261、319和348的超过10的公约数即可,容易得到,这三个数的最大公约数是29,满足题意,因此每本练习本的价格是29分,那么全班有41个人



9、:_____
A: 2B: 4C: 6D: 8
参考答案: C 本题解释:



10、小强前三次的数学测验平均分是88分,要想平均分达到90分以上,他第四次测验至少要得多少分?_____
A: 98分B: 92分C: 93分D: 96分
参考答案: D 本题解释:【答案】D。解析:如果第四次测验后平均分数达到90分,则总分为90×4=360(分),第四次测验至少要360-88×3=96(分)。故正确答案为D。



11、旅客携带了30公斤行李从A地乘飞机去B地,按民航规定,旅客最多可免费携带20公斤行李,超重部分每公斤按飞机票价格的1.5%购买行李票,现该旅客购买了120元的行李票,则他的飞机票价格应是多少?_____
A: 10000 B: 800 C: 600 D: 400
参考答案: B 本题解释:【解析】B。行李超重部分每千克收取120÷(30-20)=12元,则飞机票价为12÷1.5%=800元。



12、一个人到书店购买了一本书和一本杂志,在付钱时,他把书的定价中的个位上的数字和十位上的看反了,准备付21元取货。售货员说∶“您应该付39元才对。”请问书比杂志贵多少钱?_____
A: 20B: 21C: 23 0D: 24
参考答案: C 本题解释:【答案】C。解析:数字看反前后,书价相差18,说明十位和个位数字相差为2,总价为39,故书价只能是31,则杂志的价格是8.相差23。



13、把一个边长为4厘米的正方形铁丝框拉成两个同样大小的圆形铁丝框,则每个圆铁丝框的面积为_____。
A: AB: BC: CD: D
参考答案: D 本题解释:D【解析】设铁丝拉成的圆的半径为r,则4×4=2×2πr,r=,圆形面积S=πr2=



14、地球表面的陆地面积和海洋面积之比是29︰71,其中陆地的四分之三在北半球,那么南、北半球海洋面积之比是_____
A: 284︰29B: 113︰55C: 371︰313D: 171︰113
参考答案: D 本题解释:【解析】D。根据题干中的比例关系,可以推断出南、北半球的海洋面积之比为:



15、一笔奖金分一等奖、二等奖和三等奖,每个一等奖的奖金是每个二等奖奖金的两倍,每个二等奖的奖金是每个三等奖奖金的两倍。如果评一、二、三等奖各两人,那么每个一等奖金是308元;如果评一个一等奖,三个三等奖,两个二等奖,那么一等奖的奖金是多少元_____
A: 154B: 196C: 392D: 490
参考答案: C 本题解释:【答案解析】①每个二等奖奖金为:308÷2=154(元)。②每个三等奖奖金为:154÷2=77(元)。③一共有奖金:(308+154+77)×2=1078(元)。④设一个三等奖奖金为x元,则一个二等奖奖金为2x元,一个一等奖奖金为4x元,列方程得:4x+4x+3x=1078,x=98。一等奖奖金为:98×4=392(元)。故正确答案为C。



16、一容器内有浓度为30%的糖水,若再加入30千克水与6千克糖,则糖水的浓度变为25%。问原来糖水中含糖多少千克_____
A: 15千克 B: 18千克 C: 21千克 D: 24千克
参考答案: B 本题解释:【解析】B。设原来糖水有10x千克,含糖3x千克,则现在糖水有(10x+36)千克,含糖(3x+6)千克。由题意有,解得x=6,则3x=18,即原来糖水中含糖18千克。



17、早上7点两组农民开始在麦田里收割麦子,其中甲组20人,乙组15人。8点半,甲组分出10人捆麦子;10点,甲组将本组所有已割的麦子捆好后,全部帮乙组捆麦子;如果乙组农民一直在割麦子,什么时候乙组所有已割的麦子能够捆好?(假设每个农民的工作效率相同)_____
A: 10:45B: 11:00C: 11:15D: 11:30
参考答案: B 本题解释:工程问题。采用赋值法,赋值每个农民割麦子的效率为1,由题意,甲组割麦子的总量为20×1.5+10×1.5=45,故每个农民捆麦子的效率为45÷1.5÷10=3;设从10点之后经过x小时,乙组的麦子全部捆好。故乙组割麦子的总量为15×(3+x),捆麦子总量为20×3×x,二者应该相等,解得x=1(小时);故11:00时麦子可以全部捆好(最后一步可以采用代入排除)。



18、小王和小李合伙投资,年终根据每人的投资进行分红,小王取了全部的1/3另加9万元,小李取剩余1/3和剩下的14万元。问小王比小李多得多少万元_____
A: 0B: 1C: 2D: 3
参考答案: B 本题解释:B【解析】小李取剩下的1/3和剩下的14万元,即说明小李获得了14×3/2=21万元。又因为小王取了全部的1/3另加9万元,所以分红共有(21+9)×3/2=45万元。因此小王获得了45-21=24万元,所以小王比小李多得24-21=3万元。



19、一间长250米、宽10米、高4米的仓库放置了1000个棱长为1米的正方体箱子,剩余的空间是多少立方米?_____ B: 1500C: 5000D: 9000
参考答案: D 本题解释:D。【解析】进行简单的数字计算即可,250×10×4-1000×1=9000(m3)。



20、某公司的6名员工一起去用餐,他们各自购买了三种不同食品中的一种,且每人只购买了一份。已知盖饭15元一份,水饺7元一份,面条9元一份,他们一共花费了60元。问他们中最多有几人买了水饺?_____
A: 1B: 2C: 3D: 4
参考答案: C 本题解释:【答案】C。解析:假定购买三种食物人数分别为X、Y、Z,根据题意X+Y+Z=6,15X+7Y+9Z=60。要使得水饺最多,则其他尽可能少。根据奇偶性质,可知X、Y、Z三个数中必然两个为奇数一个为偶数,或者三个均为偶数。将选项代入验证,若Y=4,此时X、Z无正整数解;若Y=3,可知X=2,Z=1,符合题意。因此正确答案为C。老师点睛:得到15X+7Y+9Z=60后,注意到15、9、60均能被3整除,因此7Y必然能被3整除,仅C符合。



21、从一楼走到五楼,爬完一层休息30秒,一共要210秒,那么从一楼走到7楼,需要多少秒_____
A: 318B: 294C: 330D: 360
参考答案: C 本题解释:答案:C 解析:从一点走到五楼,休息了三次,那么每爬上一次需要的时间为(210-30×3)÷(5-1)=30秒,故从一楼走到七楼需要30×(7-1)+30×(7-2)=330秒。



22、100人参加7项活动,已知每个人只参加一项活动,而且每项活动参加的人数都不一样,那么,参加人数第四多的活动最多有几个人参加?_____
A: 22B: 21C: 24D: 23
参考答案: A 本题解释:总的人数是固定的100人,要使参加人数第四多的活动最多,且每项的人数不一样,则其他的项的人数要尽量的少,那么,最后三名人数最少分别为1,2,3。设第四名的人数为x人,则前三名最少分别为(x+1),(x+2),(x+3),那么:1+2+3+x+(x+1)+(x+2)+(x+3)=100,解得x=22,故参加人数第四多的活动最多有22人参加。故选A。



23、10个连续偶数的和是以1开始的10个连续奇数和的2.5倍,其中最大的偶数是多少?
A: 34B: 38C: 40D: 42
参考答案: A 本题解释:【答案】A。解析:猜证结合,以1开始的10个连续奇数的和是250,代入答案中得A。



24、一个小数去掉小数部分后得到一个整数,这个整数加上原来的小数与4的乘积,得27.6。原来这个小数是_____。
A: 2.60B: 5.65C: 7.60D: 12.65
参考答案: B 本题解释:将原来的小数分成整数部分、小数部分和整个小数。此题可理解为:原小数的4倍与它的整数部分之和为27.6,这样27.6等于5个整数部分与4个小数部分之和。因为4个小数部分之和小于4,可知原小数的整数部分应满足:5倍整数<27<5倍整数+4,所以此整数为5。所以此小数为:5+(27.6-5×5)÷4=5.65,因此,本题正确答案为B。



25、今有桃95个,分给甲、乙两个工作组的工人吃,甲组分到的桃有2/9是坏的,其他是好的,乙组分到的桃有3/16是坏的,其他是好的。甲、乙两组分到的好桃共有_____个。
A: 63B: 75C: 79D: 86
参考答案: B 本题解释:【解析】由题意,甲组分到的桃的个数是9的倍数,乙组分到的桃的个数是16的倍数。设甲组分到的桃有9χ个,乙组分到16y个,则9χ+16y=95。可以得到χ=7,y=2,则甲、乙两组分到的好桃共有9×7×(1-2/9)+16×2×1-3/16)=75(个)。故选B。



26、某S为自然数,被10除余数是9,被9除余数是8,被8除余数是7,已知100<S<1000,请问这样的数有几个?_____
A: 5 B: 4  C: 3  D: 2
参考答案: D 本题解释:D。【解析】被N除余数是N-1,所以这个数字就是几个N的公倍数-1。10,9,8的公倍数为360n(n为自然数),因为100<S<1000,所以有两个数符合条件。



27、32头牛和若干匹马的价钱相等,如果把牛的头数和马的头数互换,马的头数再减少14头,此时二者的价钱又相等了。请问,每头牛和马的价格比为多少?_____
A: 2:1B: 3:2C: 4:3D: 3:4
参考答案: D 本题解释:【答案】D。解析:设32头牛和x匹马的价钱相同,则交换后,x头牛和32-14=18头马的价钱相同,则32:x=x:18,解得x=24。故每头牛和马的价格比为24:32=3:4。



28、在一只底面半径是20cm的圆柱形小桶里,有一半径为l0cm的圆柱形钢材浸没在水中,当钢材从桶中取出后,桶里的水下降了3cm。求这段钢材的长度。_____
A: 3cmB: 6cmC: 12cmD: 18cm
参考答案: C 本题解释:【答案】C。解析:钢材的体积与水下降的体积相等,钢材长度与水下降的高度之比等于二者底面积之比的倒数,由此可得钢材长度为3×4=12。



29、有a、b、c三个数,已知a×b=24,a×c=36,b×c=54,求a+b+c=_____
A: 23B: 21C: 19D: 17
参考答案: C 本题解释: C 解析:此题最好用猜证结合法。试得a、b、c分别为:4、6、9,故选C。若要正面求解:则由前两个式子可得b=2c/3,代入第三个式子可得c=9,进而求得a=4,b=6。,a2=24×36÷54=16,所以a=4,则b=6,c=9,故a+b+c=19。



30、152个球,放入若干个同样的箱子中,一个箱子最少放10个,最多放20个,且各个箱子的球数均不相同,问有多少种放法?(不计箱子的排列,即两种放法,经过箱子的重新排列后,是一样的,就算一种放法)_____
A: 1B: 7C: 12D: 24
参考答案: A 本题解释:A【解析】 设箱子个数为m,因为每只箱子的球数均不相同,最少放10个,最多放20个,所以m≤20-10+1=11。如果m=11,那么球的总数≥10×11+(0+1+2+…+10)=110+55>152,所以m≤10。如果m≤9,那么球的总数≤10×9+(10+9+8+…+2)=90+54=144<152,所以m=10在m=10时,10×10+(10+9+…+1)=155=152+3,所以一个箱子放10个球,其余箱子分别放11,12,14,15,16,17,18,19,20个球,总数恰好为152,而且符合要求的放法也只有这一种。故本题正确答案为A。



31、有三个居委会的居民共订600份《华西都市报》,每个居委会至少订199份,最多订201份,则不同的订报方式有_____种。
A: 3B: 5C: 6D: 7
参考答案: D 本题解释:【答案】D。解析:三个居委会分别订200、200、200和199、200、201两种情况,前一种方法数为1,后一种方法数为3×2×1=6,1+6=7,故正确答案为D。



32、时钟指示2点15分,它的时针和分针所成的锐角是多少度?_____
A: 45度B: 30度C: 25度50分D: 22度30分
参考答案: D 本题解释:【答案解析】解析:追击问题的变形,2点时,时针分针成60度,即路程差为60度,时针每分钟走1/2度,分针每分钟走6度,时针分针速度差为6-1/2=11/2,15分钟后时针分针的路程差为60-(11/2)×15=-45/2,即此时分针已超过时针22度30分。



33、已知29832983…298302能被18整除,那么n的最小值是_____。
A: 4B: 5C: 6D: 7
参考答案: A 本题解释:【解析】18=2×9,这个多位数的个位上是2,满足被2整除,因此,只需考虑个位数字之和能否被9整除的问题。(2+9+8+3)×n+0+2=22n+2是9的倍数,22×4+2=90=9×10,那么n的最小值为4。



34、甲、乙沿同一公路相向而行,甲的速度是乙的1.5倍,已知甲上午8点经过邮局,乙上午10点经过邮局。问:甲乙在中途何时相遇?_____
A: 8点48分 B: 8点30分 C: 9点 D: 9点10分
参考答案: A 本题解释:A。【解析】设乙的速度为x,甲就是1.5x,当甲8点到邮局时,乙离邮局还有2个小时的路程(2x),甲乙走完2x路程需要2x/(1.5x+x)=4/5小时=48分钟,加上8点,就是8点48分相遇。



35、某数的百分之一等于0.003,那么该数的10倍是多少?_____。
A: 0.003B: 0.03C: 0.3D: 3
参考答案: D 本题解释:D【解析】某数的百分之一为0.003,则该数为0.3,那么它的10倍为3。故正确答案为D。



36、某单位有185人。在某次乒乓球比赛中。有12%的男员工和12.5%的女员工参加这次比赛。则该单位男员工有多少人?_____
A: 25B: 65C: 105D: 125
参考答案: A 本题解释:A。



37、从1、2、3、4、5、6、7、8、9中任意选三个数,使他们的和为偶数,则有多少种选法?_____
A: 40B: 41C: 44D: 46
参考答案: C 本题解释:【答案解析】:选C,形成偶数的情况:奇数+奇数+偶数=偶数;偶数+偶数+偶数=偶数=>其中,奇数+奇数+偶数=偶数=>C(2,5)[5个奇数取2个的种类]×C(1,4)[4个偶数取1个的种类]=10×4=40,偶数+偶数+偶数=偶数=>C(3,4)=4[4个偶数中选出一个不要],综上,总共4+40=44



38、2010年5月1日世博会开幕,当天是星期六,则2007年3月1日是_____。
A: 星期一B: 星期二C: 星期三D: 星期四
参考答案: D 本题解释:D【解析】由题意2010年5月1日星期六,则与2007年5月1日月份日期相同,根据核心口诀︰①一年就是1——从2007年至2010年是三年,所以加“3”②闰月再加1——从2007年至2010年1个闰月,所以加“1”又由于2007年3月1日至5月1日中间相隔2个月,所以就是“4”,多少再补算——3月31日一个“31”日,加1,故应在2010年5月1日星期六基础上减3+1+4+1=9天,最后可得2007年3月1日是星期四,正确答案为D选项。



39、有一根长240米的绳子,从某一端开始每隔4米作一个记号,每隔6米也作一个记号。然后将标有记号的地方剪断,则绳子共剪成_____段。
A: 40B: 60C: 80D: 81
参考答案: C 本题解释:【答案】C。解析:容斥原理,每隔4米作一个记号,则作记号数为240÷4-1=59;每隔6米作一个记号,则作记号数为240÷6-1=39;其中每隔12米的记号重复被作两次,类似的记号数为240÷12-1=19。因此做记号总数为59+39-19=79,即绳子被剪成80段。故正确答案为C。两集合容斥原理公式:|A∪B|=|A|+|B|-|A∩B|



40、小龙、小虎、小方和小圆四个孩子共有45个球,但不知道每个人各有几个球,如果变动,一下,小龙的球减少2个,小虎的球增加2个,小方的球增加一倍,小圆的球减少一半,那么四个人球的个数就一样多了。原来小虎有_____个球。
A: 12B: 5C: 8D: 20
参考答案: C 本题解释:【解析】设四个人的球数在变动后的个数为χ,可得方程(χ+2)+(χ-2)十2χ+0.5χ=45,解得χ=10,则原来小虎有10-2=8个球。



41、在一条公路旁有4个工厂,每个工厂的人数如图所示,且每两厂之间距离相等。现在要在公路旁设一个车站,使4个工厂的所有人员步行到车站总路程最少,这个车站应设在几号工厂门口?_____
A: 1号B: 2号C: 3号D: 4号
参考答案: C 本题解释:C【解析】 一般情况车站设在几个工厂的中间,即设在2号工厂或3号工厂门口。由于各厂人数不同,还是应通过计算再决定车站在哪一个工厂门口合适。如果设车站建在2号工厂门口,且设每两个工厂之间距离为1千米,那么4个工厂所有人员步行总路程为:1×100+1×80+2×215=100+80+430=610(千米)如果车站设在3号工厂门口,每两个工厂之间的距离为1千米,那么4个工厂所有人员步行总路程为:1×100×2+1×120+1×215=200+120+215=535(千米)显然,车站设在3号厂门口,才 能使4个工厂所有人员步行到车站总路程最少。故本题选C。



42、商店卖气枪子弹,每粒1分钱,每粒4分钱,每10粒7分钱,每20粒1角2分钱。小明的钱至多能买73粒,小刚的钱至多能买87粒.小明和小刚的钱合起来能买多少粒? _____
A: 160B: 165C: 170D: 175
参考答案: B 本题解释: 【答案】B。解析:小明子弹73颗,可知买了3个20粒,1个10粒,3个1粒,共有46分钱;同理小刚买了4个20粒,1个5粒,2个l粒,共有54分钱。两人共有100分钱,可以买8个20粒,1个5粒,共卖165粒。



43、有一本畅销书,今年每册书的成本比去年增加了10%,因此每册书的利润下降了20%,但是今年的销量比去年增加了70%。则今年销售该畅销书的总利润比去年增加了_____。
A: 36%B: 25%C: 20%D: 15%
参考答案: A 本题解释:每本书的利润值下降了20%,为原来的0.8,销量增加了70%,为原来的1.7,1.7×0.8=1.36,1.36—1=0.36,即为36%。



44、两排蜂房,一只蜜蜂从左下角的1号蜂房到8号蜂房,假设只向右方(正右或右上或右下)爬行,则不同的走法有_____。
A: 16种B: 18种C: 21种D: 24种
参考答案: C 本题解释:



45、某服装厂生产某种定型冬装,9月份销售每件冬装的利润是出厂价的25%(每件冬装的利润=出厂价-成本)。10月份将每件冬装的出厂价调低10%,成本降低10%,销售件数比9月份增长80%,那么该厂10月份销售这种冬装的利润比9月份的利润总额增长:_____
A: 2%B: 8%C: 40.5%D: 62%
参考答案: D 本题解释:【解析】D。设出厂价为100,则9月份单件利润是25,成本为75。10月的出厂价为90,成本为75×0.9=67.5,单件利润为90-67.5=22.5。设9月的销售量为1,则10月为1.8。9月总利润为25,10月为1.8×22.5=40.5,10月比9月总利润增长40.5÷25-1=62%。



46、某校图书馆新购进120本图书,其中教育学类书60本,心理学类40本,有30本既不属于教育学类也不属于心理学类,则这批书中教育心理学书有多少本?_____
A: 10B: 20C: 30D: 40
参考答案: A 本题解释:A【解析】设教育心理学书购进X本。则根据两集合容斥原理核心公式可得︰60+40-x=120-30x=10,故答案为A选项。



47、(101+103+…+199)-(90+92+…+188)=_____。
A: 100 B: 199 C: 550 D: 990
参考答案: C 本题解释:C[解析]提取公因式法。101-90=11,103-92=11,……,199-188=11,总计有50个这样的算式,所以50×11=550,选择C。



48、对某单位的100名员工进行调查,结果发现他们喜欢看球赛和电影、戏剧。其中58人喜欢看球赛,38人喜欢看戏剧,52人喜欢看电影,既喜欢看球赛又喜欢看戏剧的有18人,既喜欢看电影又喜欢所戏剧的有16人,三种都喜欢看的有12人,则只喜欢看电影的有_____。
A: 22人 B: 28人C: 30人D: 36人
参考答案: A 本题解释:【解析】A。解答此题的关键在于弄清楚题中的数字是怎样统计出来的。一个人喜欢三种中的一种,则只被统计一次;一个人如喜欢两种,则被统计两次,即被重复统计一次;一个人如喜欢三种,则被统计三次,即喜欢看球赛、电影和戏剧的人数中都包括他,所以他被重复统计了两次。总人数为100,而喜欢看球赛、电影和戏剧的总人次数为:58+38+52=148,所以共有48人次被重复统计。这包括4种情况:(1)12个人三种都喜欢,则共占了36人次,其中24人次是被重复统计的;(2)仅喜欢看球赛和戏剧的,题中交待既喜欢看球赛又喜欢看戏剧的共有18人,这个数字包括三种都喜欢的12人在内,所以仅喜欢看球赛和戏剧的有6人,则此6人被统计了两次,即此处有6人次被重复统计;(3)仅喜欢看电影和戏剧的,题中交待既喜欢看电影又喜欢看戏剧的有16人,这个数字也应包括三种都喜欢的12人在内,所以仅喜欢看电影和戏剧只有4人,即此处有4人被重复统计。(4)仅喜欢看球赛和电影的,此类人数题中没有交待,但我们可通过分析计算出来。一共有48人次被重复统计,其中三种都喜欢的被重复统计了24人次,仅喜欢看球赛和戏剧的被重复统计了6人次,仅喜欢看电影和戏剧的被重复统计了4人次,则仅喜欢看球赛和电影的被重复统计的人次数为:48-24-6-4=14,这也就是仅喜欢球赛和电影的人数。一共有52人喜欢看电影,其中12人三种都喜欢,4人仅喜欢看电影和戏剧两种,14人仅喜欢看球赛和电影两种,则只喜欢看电影的人数为:52-12-4-14=22。



49、船在流速为每小时1000米左右的河上逆流而上,行至中午12点时,有一乘客的帽子落到了河里。乘客请求船家返回追赶帽子,这时船已经开到离帽子100米远的上游。已知在静水中这只船的船速为每分钟20米。假设不计调头的时间,马上开始追赶帽子,问追回帽子应该是几点几分?_____
A: 12点10分B: 12点15分C: l2点20分D: 12点30分
参考答案: A 本题解释:【解析】A。本题不需要考虑水速。船和帽子的相对速度为每分钟20米,距离相差100米,可得追上帽子需要5分钟;发现帽子到返回追帽子船走了100米,此段路程所花的时间为5分钟,则追回帽子应该是12点10分。



50、一个三位自然数。把它十位上的数字去掉后变成的两位数是原来三位数的七分之一。问这样的三位数有几个?_____
A: 0B: 1C: 2D: 3
参考答案: B 本题解释:B。



51、41个学生要坐船过河,渡口处只有一只能载4人的小船(无船工),他们要全部渡过河去,至少要使用这只小船渡河多少次_____
A: 23B: 24C: 27D: 26
参考答案: C 本题解释:【答案】C。解析:4个人渡过去,1个人回来,因此每2次渡河可以渡过去3个学生.41=3×13+2,因此一共需要13×2+1=27次。



52、小吴到商店买布。有两种同样长的布料,小吴买了第一种布料25米,买了第二种布料12米,小吴买完后,第一种布料剩下的长度是第二种布料剩下的长度的一半。那么这两种布料原来共有_____米。
A: 26B: 38C: 72D: 76
参考答案: D 本题解释:【答案】D。解析:设原来每种布料的长度为x米,则依题意得出方程:2(X-25)=X-12,解得x=38米,所以两种布料的总长为76米,因此,本题答案为D选项。



53、从12时到13时,钟的时针与分针可成直角的机会有多少次?_____
A: 1 B: 2 C: 3 D: 4
参考答案: B 本题解释:B【解析】时针和分针在12点时从同一位置出发,按照规律,分针转过360度,时针转过30度,即分针转过6度(一分钟),时针转过0.5度,若一个小时内时针和分针之间相隔90度,则有方程:6x=0.5x+90和6x=0.5x+270成立,分别解得x的值就可以得出当前的时间,应该是12点180/11分(约为16分左右)和12点540/11分(约为50分左右),可得为两次。



54、有一笔奖金,按1:2:3的比例来分,已知第三人分450元,那么这笔奖金总共是_____元。
A: 1150 B: 1000 C: 900 D: 750
参考答案: C 本题解释:C。根据题意可知,这笔奖金共分为6份,而分到3份的第三人拿到了450元,则6份当是450×2=900元。所以正确答案为C项。



55、商场的自动扶梯以匀速由下往上行驶,两个孩子嫌扶梯走得太慢,于是在行驶的扶梯上,男孩每秒钟向上走2个梯级,女孩每2秒钟向上走3个梯级。结果男孩用40秒钟到达,女孩用50秒钟到达。则当该扶梯静止时,可看到的扶梯梯级有_____。
A: 80级 B: 100级 C: 120级 D: 140级
参考答案: B 本题解释:B。【解析】男孩所走的台阶数为40×2=80,女孩所走的台阶数为50/2×3=75,那么电梯的速度就应该为(80-75)/(50-40)=0.5,电梯所经过的台阶就为40×0.5=20, 电梯经过的台阶加上男孩经过的台阶,就是电梯的台阶数,即100级。



56、某商场举行周年让利活动,单件商品满300减180元,满200减100元,满100减40元;若不参加活动则打5.5折。小王买了价值360元,220元,150元的商品各一件,最少需要多少元钱?_____
A: 360B: 382.5C: 401.5D: 410
参考答案: B 本题解释:【答案】B。解析:如下表:因此最少需要180+120+82.5=382.5元。



57、从6名男生,5名女生中任选4人参加竞赛,要求男女至少各1名,有多少种不同的选法?_____
A: 240B: 310 C: 720 D: 1080
参考答案: B 本题解释: 答案【B】解析:此题从正面考虑的话情况比较多,如果采用间接法,男女至少各一人的反面就是分别只选男生或者女生,这样就可以变化成C(11,4)-C(6,4)-C(5,4)=310。



58、有20位运动员参加长跑,他们的参赛号码分别是1,2,3,……,20,至少要从中选出多少个参赛号码,才能保证至少有两个号码的差是13的倍数? _____
A: 12B: 15C: 14D: 13
参考答案: C 本题解释:答案:C 解析:将这20个数字分别为如下3组:(1,14),(2,15),(3,16),…,(7,20),8,9,10,11,12,13,考虑最差的情况,取出14个数字至少有2个数字在同一组,则它们之差为13。



59、如下图,梯形ABCD的对角线AC⊥BD,其中AD=1/2,BC=3,AC=2×4/5,BD=2.1。问梯形ABCD的高AE的值是_____。
A: 43/24B: 1.72C: 4/252D: 1.81
参考答案: C 本题解释:【解析】由AC×BD=(AD+BC)×AE→AE=42/25。



60、一个正方体木块放在桌子上,每一面都有一个数,位于对面两个数的和都等于13,小张能看到顶面和两个侧面,看到的三个数和为18;小李能看到顶面和另外两个侧面,看到的三个数的和为24,那么贴着桌子的这一面的数是多少_____
A: 4B: 5C: 6D: 7
参考答案: B 本题解释:【答案】B。解析:小张、小李二人看到的数加起来一共为2组对面加上2倍的顶面,因此顶面为(18+24-13×2)÷2=8,底面为13-8=5.



61、一杯糖水,第一次加入一定量的水后,糖水的含糖百分比为15%;第二次又加入同样多的水,糖水的含糖量百分比为12%;第三次加入同样多的水,糖水的含糖量百分比将变为多少? _____
A: 8%B: 9%C: 10%D: 11%
参考答案: C 本题解释:C。【解析】设第一次加入糖水后,糖水的量的为100,则糖的量为15,第二次加水后,糖水的量为15/12*100=125,即加水的量为125-100=25,第三次加水,百分比为15/(125+15)=10%



62、一列长90米的火车以每秒30米的速度匀速通过一座长1200米的桥,所需时间为_____。
A: 37秒B: 40秒C: 43秒D: 46秒
参考答案: C 本题解释:C【精析】火车过桥实际走过的距离等于火车的长度加上桥的长度,因此所需时间=(1200+90)÷30=43(秒)。



63、某企业响应国家发展低碳经济的号召,比去年节约了10%的成本,在收入不变的情况下使得企业的利润提高了30%,则今年的成本占收入的比例为_____。
A: 65%B: 67.5%C: 75%D: 80%
参考答案: B 本题解释:【答案】B。解析:显然去年的成本的10%等于去年利润的30%,因此去年成本占收入的比例为3÷(3+1)×100%=75%,今年的成本下降了10%,而收入不变,因此其所占比例也下降了10%,因此今年所占比例为75%×(1—10%)=67.5%,因此选B。



64、有个班的同学去划船,他们算了一下:如果增加一条船,正好可以坐8人,如果减少一条船,正好可以坐12人,问这个班共有多少同学?_____
A: 44B: 45C: 48D: 50
参考答案: C 本题解释:【答案】C。解析:设有船m只,则根据题意可得:8(m+1)=12(m-1),解得m=5。所以这个班共有同学8×(5+1)=48,故正确答案为C。



65、某月刊杂志,定价2.5元,劳资处一些人订全年,其余人订半年,共需510元,如果订全年的改订半年,订半年的改订全年,共需300元,劳资处共多少人?_____
A: 20 B: 19 C: 18 D: 17
参考答案: C 本题解释: 【解析】本题用解方程的方法也可以解答,但是速度较慢。由题意可知,如果劳资处所有人都订一年半的话,总计810元;而单人订一年半的月刊需元;所以共有人。故选C。



66、足球比赛的记分规则为:胜一场得3分;平一场得1分;负一场得0分。一个队打了14场,负5场,共得19分,那么这个队胜了几场?_____
A: 3 B: 4 C: 5 D: 6
参考答案: C 本题解释: 【解析】C。设这个队胜了X场,可得方程3X+9-X=19,得X=5,所以此队胜了5场。



67、有100人参加运动会的三个比赛项目,每人至少参加一项,其中未参加跳远的有50人,未参加跳高的有60人,未参加赛跑的有70人。问至少有多少人参加了不止一个项目?_____
A: 7B: 10C: 15D: 20
参考答案: B 本题解释:B【解析】最值问题。由题意,参加跳远的人数为50人,参加跳高的为40人,参加赛跑的为30人;即参加项目的人次为120人次;故欲使参加不止一项的人数最少,则需要使只参加一项的人数最多为x,参加3项的人数为y;故x+3y=120,x+y=100,解得y=10。



68、如果当“张三被录取的概率是1/2,李四被录取的概率是1/4时,命题:要么张三被录取,要么李四被录取” 的概率就是_____
A: 1/4 B: 1/2 C: 3/4D: 4/4
参考答案: B 本题解释:B。【解析】要么张三录取要么李四录取就是2人不能同时录取且至少有一人录取,张三被录取的概率是1/2,李四被录取的概率是1/4,(1/2) ×(3/4)+(1/4) ×(1/2)=3/8+1/8=1/2其中(1/2) ×(3/4)代表张三被录取但李四没被录取的概率,(1/2) ×(1/4)代表张三没被录取但李四被录取的概率。李四被录取的概率为1/4=>没被录取的概率为1-(1/4)=3/4。



69、一个数能被3、5、7整除,若用11去除这个数则余1,这个数最小是多少?_____
A: 105B: 210C: 265D: 375
参考答案: B 本题解释:B。这个数能被3、5、7整除,因此这个数是105的倍数.若这个数是105,105除以11的余数是6,不符合题意;若这个数是105×2=210,210除以11的余数是1,满足题意。因此这个数最小是210。



70、三个连续的偶数的乘积为192,那么其中最大的数是多少?_____
A: 4B: 6C: 12D: 8
参考答案: D 本题解释:答案:D【解析】设最小的偶数为x,则这三个偶数依次为x,x+2,x+4,故x?(x+2)?(x+4)=192。用代入法解答。经过验证x=4,则最大的偶数为8。因此正确答案为D。



71、在平面直角坐标系中,如果点P(3a-9,1-a)在第三象限内,且横坐标、纵坐标都是整数,则点P的坐标是_____。
A: (一1.一3)B: (一3,一1)C: (一3,2)D: (一2,一3)
参考答案: B 本题解释:B【解析】第三象限内的值都是负值,因此可得。且P点横纵坐标都是整数,因此2,所以P点坐标是(一3,一1)。



72、小红把平时节省下来的全部五分硬币先围成一个正三角形,正好用完,后来又改围成一个正方形,也正好用完。如果正方形的每条边比三角形的每条边少用5枚硬币 ,则小红所有五分三角币的总价值是_____。
A: 1元 B: 2元 C: 3元 D: 4元
参考答案: A 本题解释:【解析】A。设正方形每条边用 X 枚硬币,则正三角形每条边用 (X+5) 枚硬币,由题意可得等式: 4X = 3(X+5) ,解得 X = 15 。所以小红共有 60 枚五分硬币,面值 3 元。



73、若干学校联合进行团体操表演,参演学生组成一个方阵,已知方阵由外到内第二层有104人,则该方阵共有学生_____人。
A: 625B: 841C: 1024D: 1369
参考答案: B 本题解释:【答案】B。解析:根据方阵公式:最外层人数=4×最外层每边人数﹣4可知:由外到内第二层每排的学生数=(104+4)÷4=27个;最外一层每排有学生=27+2=27+2=29个;所以该方阵共有学生:29×29=841个,故正确答案为B。



74、一只船沿河顺水而行的航速为30千米/小时,已知按同样的航速在该河上顺水航行3小时和逆水航行5小时的航程相等,则此船在该河上顺水漂流半小时的航程为:_____
A: 1千米B: 2千米C: 3千米D: 6千米
参考答案: C 本题解释:【答案解析】根据水速=(顺速-逆速)/2,所以(30-18)/2=6,因此漂流半小时就是6×1/2=3,选C。



75、某班学生不到50人,在一次考试中,有1/7人得优,1/3人得良,1/2人及格,其余的均不及格,那么不及格的人数是_____
A: 1 B: 2 C: 3 D: 4
参考答案: A 本题解释: A。通过题干可知,该班级最少人数应为7、3、2的最小公倍数,又因为不能超过50人,所以该班人数为7×3×2=42人。那么不及格的人数为42…61421=1。故正确答案为A。



76、2 年前甲年龄是乙年龄的2 倍,5 年前乙年龄是丙年龄的1/3,丙今年11 岁,问甲今年几岁?_____
A: 12B: 10C: 9D: 8
参考答案: A 本题解释: 【解析】五年前乙是(11-5)/3=2岁,所以今年是7岁,两年前是5岁。所以2年前甲是10岁,今年是12岁,选A。



77、有100人参加运动会的三个比赛项目,每人至少参加一项,其中未参加跳远的有50人,未参加跳高的有60人,未参加赛跑的有70人。问至少有多少人参加了不止一个项目?_____
A: 7 B: 10 C: 15 D: 20
参考答案: B 本题解释:【解析】B.最值问题。由题意,参加跳远的人数为50人,参加跳高的为40人,参加赛跑的为30人;即参加项目的人次为120人次;故欲使参加不止一项的人数最少,则需要使只参加一项的人数最多为x,参加3项的人数为y;故x+3y=120,x+y=100,解得y=10



78、一批玩具,比进价高200%销售,一段时间后,六一儿童凶促销,玩具按定价6折出售,打折后这批价格比进价高百分之几?_____
A: 20 B: 40 C: 60 D: 80
参考答案: D 本题解释:D。假设进价为100,则打折前售价为100×(1+200%)=300,打折后售价为300×60%=180元,比进价高(180-100)÷100×100%=80%。故选D项。



79、孙某共用24000元买进甲、乙股票若干,在甲股票升值15%、乙股票下跌10%时全部抛出,共赚到1350元,则孙某最初购买甲、乙两支股票的投资比例是_____。
A: 5∶3 B: 8∶5 C: 8∶3 D: 3∶5
参考答案: A 本题解释:A。经济利润问题。设甲股票买了X元,乙股票买了Y元,列方程组:X+Y=2400015%X-10%Y=1350解得X=15000,Y=9000,故X∶Y=15∶9=5∶3, 选A。



80、甲、乙两地相距6千米,某人从甲地步行去乙地,前一半时间平均每分钟行80米,后一半时间平均每分钟行70米。问他走后一半路程用了多少分钟?_____
A: 35B: 40C: 37.5D: 42.5
参考答案: D



81、杂货店分三次进了一些货物,已知每一次的进货单价都是上一次的80%,且第一次的进货单价为5元。已知这些货物恰好能够排成一个三层的空心方阵,且最内层、中间层和最外层恰好分别是第一、二、三次所进的货物,且最外层每边有7个货物。现要保证20%利润率的情况下,杂货店应该将货物至少定为多少元?_____
A: 3.90B: 4.12C: 4.36D: 4.52
参考答案: D 本题解释:【解析】D。三次的单价分别为5元、5×80%=4元、4×80%=3.2元。最外层有货物(7-1)x4=24个,中间层有24-8=16个,最内层有I6-8=8个。所以总进价为3.2x24+4xl6+5x8=l80.8元,要保证20%的利润率,货物定价为180.8x(1+20%)÷(24+16+8)=4.52元。



82、一种商品如果以八折出售,可以获得相当于进价20%的毛利,那么如果以原价出售,可以获得相当于进价百分之几的毛利?_____
A: 20%;B: 30%;C: 40%;D: 50%;
参考答案: D 本题解释:【答案解析】:选D,设原价X,进价Y,那X×80%-Y=Y×20%,解出X=1.5Y所求为[(X-Y)/Y]×100%=[(1.5Y-Y)/Y]×100%=50%



83、有100人参加运动会的三个比赛项目,每人至少参加一项,其中未参加跳远的有50人,未参加跳高的有60人,未参加赛跑的有70人。问至少有多少人参加了不止一个项目?_____
A: 7B: 10C: 15D: 20
参考答案: B 本题解释:【解析】B。最值问题。由题意,参加跳远的人数为50人,参加跳高的为40人,参加赛跑的为30人;即参加项目的人次为120人次;故欲使参加不止一项的人数最少,则需要使只参加一项的人数最多为x,参加3项的人数为y;故x+3y=120,x+y=100,解得y=10。



84、在一次展览会上,展品上有366部手机不是A公司的,有276部手机不是B公司的,但两公司的展品共有378部。问B公司有多少部手机参展?_____
A: 134B: 144C: 234D: 244
参考答案: C 本题解释:C。其它公司的有(366+276-378)/2=132部,所以B公司有366-132=234,选C。



85、某项工程计划300天完成,开工100天后,由于施工人员减少,工作效率下降20%,问完成该工程比原计划推迟多少天? _____
A: 40B: 50C: 60D: 70
参考答案: B 本题解释: B。根据效率与时间成反比,可得正常200天的工作,效率下降后需要200÷ (1-20%) =250天,故需推迟50天。



86、两辆汽车同时从A、B两站相对开出,在B侧距中点20千米处两车相遇,继续以原速前进,到达对方出发站后又立即返回,两车再在距A站160千米处第二次相遇。求A、B两站距离是A_____。
A: 440千米B: 400千米C: 380千米D: 320千米
参考答案: A 本题解释:A[解析]首先,注意到第一次相遇后到第二次相遇时行的路程是出发到第一次相遇时行的路程的2倍。设A、B两站相距x千米,则第一次相遇时,B车行了(0.5x-20)千米;第二次相遇时,B车共行了(0.5x-20)×3(千米),或一个全长又160千米。列方程,得:(0.5x-20)×3=x+160x=440因此,本题正确答案为A。



87、甲、乙两校共有毕业生180人,两校各买了一批纪念册,给本校毕业生每人一本后,甲校余116本,乙校余114本。经研究两校各向彼校毕业生每人送一本纪念册,送后甲校还比乙校多剩10本。问甲校的毕业生人数比乙校的毕业生人数多多少人?_____
A: 20人B: 16人C: 10人D: 8人
参考答案: D 本题解释:【解析】解一:由题意知,两校各给本校毕业生每人一本后共余下116+114=230本。两校再各向彼校毕业生每人送一本后共余下230-180=50本,而这时甲校比乙校多余下10本,故知此时甲校还余下(50+10)÷2=30本,乙校还余下(50-10)÷2=20本。而两校各给对方每个毕业生送了一本后,相当于两校买的纪念册各发了180本,所以甲校买了30+180=210本,乙校买了20+180=200本,甲、乙两校的毕业生人数分别是210-116=94人,200-114=86人。二者之差94-86=8人。故选D。解二:第一次分发毕业纪念册后,甲校余下的比乙校多116-114=2本,给彼校分发完毕后,甲校比乙校剩余的多10本,由此可推断甲校学生比乙校多10-2=8人,故选D。



88、某种考试已举行了24次,共出了试题426道,每次出的题数有25题,或者16题,或者20题,那么其中考25题的有多少次?_____
A: 4B: 2C: 6D: 9
参考答案: B 本题解释:B【解析】 假设24次考试,每次16题,则共考16×24=384(道),比实际考题数少426-384=42(道),也就是每次考25题与每次考20题,共多考的题数之和为42道。而考25题每次多考25-16=9(道),考20题每次多考20-16=4(道)。这样有9×A+4×B=42,其中A表示考25题的次数,B表示考20题的次数。根据数的奇偶性可知,B无论是奇数还是偶数,4B总是偶数,那么9A也是偶数,因此A必定是偶数,且A不是2就是4。如果A=4,则9×4+4×B=42,B=1.5不合题意,应删去,所以考25道试题的次数是2次。



89、某单位有员工540人,如果男员工增加30人就是女员工人数的2倍,那么原来男员工比女员工多几人?_____
A: 13B: 31C: 160D: 27
参考答案: C 本题解释:【答案】C。解析:男员工增加30人后,总员工为570人,男员工是女员工的2倍,得女员工为570÷3=190,则原有男员工540-190=350,男员工比女员工多350-190=160人。故正确答案为C。老师点睛:男员工增加30人后,总员工为570人,男员工是女员工的2倍,由于540、30均为偶数,则原有男、女员工的数目也为偶数,男员工比女员工多的人数也是偶数。只有选项C符合条件,故正确答案为C。



90、张先生向商店订购某种商品80件,每件定价100元。张先生向商店经理说:“如果你肯减价,每减1元,我就多订购4件。”商店经理算了一下,如果减价5%,由于张先生多订购,仍可获得与原来一样多的利润。则这种商品每件的成本是_____。
A: 75元B: 80元C: 85元D: 90元
参考答案: A 本题解释:【解析】A。设成本为x元。减价5%即减去了5元,同样就要多购买4×5=20件,利润相同,即可得到等式(100-x)×80=(95-x)×(80+20),得x=75。



91、一个学雷锋小组的大学生们每天到餐馆打工半小时,每人可挣3元钱。到11月11日,他们一共挣了1764元。这个小组计划到12月9日这天挣足3000元捐给“希望工程”。因此小组必须在几天后增加一个人。增加的这个人应该从11月_____日起每天到餐馆打工,才能到12月9日恰好挣足3000元钱。
A: 18B: 24C: 14D: 20
参考答案: D 本题解释:D[解析]还缺3000-1764=1236(元),从11月12日~12月9日还有30+9-12+1=28(天),这28天中,(原来小组中)每人可挣3×28=84(元)。因为1236÷84=14……60,所以原有14人,必须增加一个人挣60元。60÷3=20(天),30+9-20+1=20,所以增加的这个人应该从11月20日起去打工。



92、一批树苗有100多棵,小王每天种8棵,第21天种完,小李每天种9棵,第18天种完。小孙每天种10棵,问第几天可以种完?_____
A: 14B: 15C: 17D: 18
参考答案: C 本题解释:【答案】C。解析:设这批树苗一共有z棵,从“小王每天种8棵,第21天种完”可知,8×20+l≤z≤8×21;从“小李每天种9棵,第18天种完”可知,9×17+1≤z≤9×18,结合两个不等式得:161≤z≤162。如果小孙每天种10棵的话,在z的取值范围内,一定是在第17天种完。



93、六个盘子中各放有一块糖,每次从任选的两个盘子中各取一块放入另一个盘子中,这样至少要做多少次,才能把所有的糖都集中到一个盘子中_____
A: 3B: 4C: 5D: 6
参考答案: B 本题解释:【答案】B。解析:开始时是1,1,1,1,1,1,第二次变为0,0,3,1,1,1,第三次变为2,0,2,0,1,1,第三次变为4,0,1,0,0,1,第四次变为6,0,0,0,0,0。



94、某年10月份有四个星期四,五个星期三,这年的10月8日是星期_____。
A: 一B: 二C: 三D: 四
参考答案: A 本题解释:【答案】A。解析:根据题意,10月份的31号肯定是星期三,以此推断10月10号也是星期三,那么10月8日应该是星期一。



95、有一个矩形花园,长比宽多30米,现在花园的四周铺等宽的环路。已知路的面积是800M2,路的外周长是180m,问路宽是多少米?_____
A: 4B: 5C: 6D: 3
参考答案: B 本题解释:【答案】B。解析:设小矩形的宽是x,则长是x+30;设路宽是y,则大矩形的宽是x+2,大矩形的长是x+30+2y,已知条件可表示为(x+2y)(x+30+27)-x(x+30)=800和2(x+2y+x+30+2y)=180,解得y=5米。



96、小红把平时节省下来的全部五分硬币先围成一个正三角形,正好用完,后来又改围成一个正方形,也正好用完。如果正方形的每条边比三角形的每条边少用5枚硬币,则小红所有五分硬币的总价值是_____。
A: 1元 B: 2元 C: 3元 D: 4元
参考答案: C 本题解释:C。【解析】设三角形每条边X,正方形为Y,那么Y=X-5,同时由于硬币个数相同,那么3X=4Y,如此可以算出X=20,则硬币共有3×20=60个,硬币为5分硬币,那么总价值是5×60=300(分),得出结果。



97、某超市用2500元购进一批鸡蛋,销售过程中损耗鸡蛋10千克。已知超市每千克鸡蛋的售价比进价高1元,全部售完后共赚440元,则共购进这批鸡蛋_____千克。
A: 460B: 500C: 590D: 610
参考答案: B 本题解释:【答案】B。解析:假定每千克鸡蛋的进价为x,而全部售完共赚440元,因此实际售出鸡蛋千克数为440+10x千克,加上损耗的10千克,共计450+10x千克。由题意:(450+10x)x=2500,解得x=5。因此共购进鸡蛋为2500÷5=500千克。故正确答案为B。老师点睛:总价为2500元,比能够被鸡蛋的千克数整除,仅B选项符合。



98、8.01×1.24+8.02×1.23+8.03×1.22的整数部分是多少?_____
A: 24B: 27C: 29D: 33
参考答案: C 本题解释:答案:C【解析】由8.03×1.22<8.02×1.23<8.01×1.24得:8.01×1.24+8.02×1.23+8.03×1.22<8.01×1.24×3<8×1.25×3=30。8.01×1.24+8.02×1.23+8.03×1.22>8×(1.24+1.23+1.22)=8×3.69=29.52。所以,所求的整数部分为29。故选C。



99、甲从A地,乙从B地同时以均匀的速度相向而行,第一次相遇离A地6千米,继续前进,到达对方起点后立即返回,在离B地3千米处第二次相遇,则A,B两地相距多少千米? (D)
A: 10B: 12C: 18D: 15
参考答案: D 本题解释:答案:D 解析:设A,B两地相距为y千米,6/(y-6)=(y-6+3)/(6+y-3),解得y=15。



100、一批衣服,甲单独卖完要10天,乙单独卖完要15天,如果两人合作工作效率就会降低,甲每天只能完成工作量的4/5,乙每天只能完成工作量的9/10。现在要8天卖完这批衣服,两人合作的天数尽量少,那么两人合作多少天?_____
A: 3B: 5C: 7011D: 7
参考答案: B




首页 上页 1 2 下页 尾页 2/2/2
微信搜索关注"91考试网"公众号,领30元,获取公务员事业编教师考试资料40G
【省市县地区导航】【考试题库导航】
 ★ 村官考试省级导航 ★ 
A安徽 B北京 C重庆 F福建 G广东 广西 甘肃 贵州 H河南 河北 湖南 湖北 黑龙江 海南 J江苏 江西 吉林 L辽宁 N内蒙古 宁夏 Q青海 S山东 山西 陕西 四川 上海 T天津 X新疆 西藏 Y云南 Z浙江 更详细省市县级导航
 ★ 村官考试信息汇总 ★ 
 ★ 公务员考试试题汇总 ★ 
 ★ 省市县导航及其他考试 ★ 

电脑版  |  手机版  |  返回顶部