时间:2016-06-23 07:30:40
1、某商品按定价的80%(八折)出售,仍能获得20%的利润,问定价时期望的利润率是多少?_____
A: 50%B: 40%C: 30%D: 20%
参考答案: A 本题解释:【答案解析】设成本为1,根据定价的80%=1.2,所以定价为1.5,1.5-1=0.5,选A。考查对于利润的理解:单个商品利润=售价-成本,获得百分之几的利润是相对于成本来说的,如我们生产一支笔成本1元,我们将它以1.5元出售,则获得利润为0.5元,因为(0.5/1)*100%=50%,所以获得了50%的利润解法如下:设定价为y,成本为x,则按定价80%出售,仍获得20%利润用数学公式表示就是0.8y-x=0.2x,即售价-成本=利润因此,得y=3x/2,或按原价出售,则利润为,y-x=3x/2-x=x/2即利润率为50%。
2、a大学的小李和b大学的小孙分别从自己学校同时出发,不断往返于a、b两校之间。现已知小李的速度为85米/分钟,小孙的速度为105米/分钟,且经过12分钟后两人第二次相遇。问a、b两校相距多少米?_____
A: 1140米B: 980米C: 840米D: 760米
参考答案: D 本题解释:【答案解析】设两校相距s米,则第二次相遇两人的路程和为3s米,有3s=(85+105)×12,解得s=760。
3、有一个电子钟,每走8分钟亮一次灯,每到整点响一次铃。中午12点整,电子钟响铃又亮灯。下一次既响铃又亮灯是几点钟?_____
A: 1B: 2C: 3D: 4
参考答案: B 本题解释:【答案】B。解析:8分钟和一个小时(60分钟)的最小公倍数是120分钟,所以再过120分钟又一次既响铃又亮灯。
4、杂货店分三次进了一些货物,已知每一次的进货单价都是上一次的80%,且第一次的进货单价为5元。已知这些货物恰好能够排成一个三层的空心方阵,且最内层、中间层和最外层恰好分别是第一、二、三次所进的货物,且最外层每边有7个货物。现要保证20%利润率的情况下,杂货店应该将货物至少定为多少元?_____
A: 3.90 B: 4.12 C: 4.36 D: 4.52
参考答案: D 本题解释:【答案】D。解析:三次的单价分别为5、5×80%=4、4×80%=3.2元。最外层有货物(7-1)×4=24个,中间层有24-8=16个,最内层有16-8=8个。所以总进价为3.2×24+4×16+5×8=180.8元,要保证20%的利润率,货物定价为180.8×(1+20%)÷(24+16+8)=4.52元。
5、田忌与齐威王赛马并最终获胜被传为佳话,假设齐威王以上等马、中等马和下等马的固定程序排阵,那么田忌随机将自己的三匹马排阵时,能够获得两场胜利的概率是_____。
A: 2/3B: 1/3C: 1/6D: 1/9
参考答案: C 本题解释:【答案】C。解析:故正确答案为C。
6、有四个数,其中每三个数的和分别是45,46,49,52,那么这四个数中最小的一个数是多少?_____
A: 15 B: 14 C: 13 D: 12
参考答案: D 本题解释:D。【解析】如果把4个数全加起来是什么?实际上是每个数都加了3遍。 (45+46+49+52)÷3=64就是这四个数的和,题目要求最小的数,用64减去52(某三个数和最大的)就是最小的数,等于12。
7、真分数a/7化为小数后,如果从小数点后第一位数字开始连续若干数字之和是1992,那么A的值是_____。
A: 6B: 5C: 7D: 8
参考答案: A 本题解释:【答案解析】:由于除7不能整除的的数结果会是‘142857’的循环(这个可以自己测算一下),1+4+2+8+5+7=27,1992/27余数为21,重循环里边可知8+5+7+1=21,所以8571会多算一遍(多重复的一遍,一定在靠近小数点的位置上),则小数点后第一位为8,因此a为6。
8、现有红、黄、蓝三种颜色的珠子各若干颗,分给某班的52个学生,每个学生可以取1至3颗珠子,一种颜色的珠子最多只能取1颗。那么,这班学生中至少有_____人取的珠子完全相同。
A: 5B: 8C: 13D: 17
参考答案: B 本题解释:B[解析]取珠子的种类有如下7种:①红;②黄;③蓝;④红与黄;⑤红与蓝;⑥黄与蓝;⑦红、黄、蓝。从最不巧的情况想。每七个学生取的珠子的种类各不相同,因为52÷7(余3),所以,至少有7+1(即8)个人取的珠子完全相同。故本题正确答案为B。
9、赵先生34岁,钱女士30岁,一天,他们碰上了赵先生的三个邻居,钱女士问起了他们的年龄,赵先生说∶他们三人的年龄各不相同,三人的年龄之积是2 450,三人的年龄之和是我俩年龄之和。问三个邻居中年龄最大的是多少岁? _____
A: 42B: 45C: 49D: 50
参考答案: C 本题解释:【答案】C 解析∶2450=2×5×5×7×7,三人年龄之和为64,分析可知当三人年龄分别为5、10、49时符合题意,年龄最大者是49岁。
10、现有一批货物共37吨需要运输,有两种货车供选择,其中大车载重7吨,小车载重4吨,现需一次拉完且车都满载,问共需大小货车多少辆?_____
A: 5B: 6C: 7D: 8
参考答案: C 本题解释:【答案】C。解析:设需要大、小货车各x、y辆,依题意有7x+4y=37。7÷4=1…3,37÷4=9…1,因此x不能为1。x=3时,解得y=4,符合题意,需要的货车数量为3+4=7(辆)。
11、甲、乙、丙、丁四个人比赛打羽毛球,每两个都要赛一场,已知甲胜了丁,并且甲、乙、丙三人胜的场数相同,那么丁胜了几场?_____
A: 6 B: 0 C: 12 D: 3
参考答案: B 本题解释:【解析】B。每人至多赛3场,排除A、C。甲胜丁,则丁至少输1场,排除D。
12、77个连续自然数的和是7546,则其中第45个自然数是_____。
A: 91B: 100C: 104D: 105
参考答案: C 本题解释:77个自然数的和是7546,故平均数7546÷77=98为中位数,也即第39个数,因此第45个数为104。故选C。
13、正六面体的表面积增加96%,棱长增加多少?_____
A: 20%B: 30%C: 40%D: 50%
参考答案: C 本题解释:【答案】C。解析:根据几何等比放缩性质,表面积为原来的1.96倍时,棱长为原来的1.4倍,因此棱长增加了40%。故正确答案为C。
14、一个三位自然数。把它十位上的数字去掉后变成的两位数是原来三位数的七分之一。问这样的三位数有几个?_____
A: 0B: 1C: 2D: 3
参考答案: B 本题解释:B。
15、船在流速为每小时1000米左右的河上逆流而上,行至中午12点时,有一乘客的帽子落到了河里。乘客请求船家返回追赶帽子,这时船已经开到离帽子100米远的上游。已知在静水中这只船的船速为每分钟20米。假设不计调头的时间,马上开始追赶帽子,问追回帽子应该是几点几分?_____
A: 12点10分B: 12点15分C: l2点20分D: 12点30分
参考答案: A 本题解释:【解析】A。本题不需要考虑水速。船和帽子的相对速度为每分钟20米,距离相差100米,可得追上帽子需要5分钟;发现帽子到返回追帽子船走了100米,此段路程所花的时间为5分钟,则追回帽子应该是12点10分。
16、“红星”啤酒开展“7个空瓶换l瓶啤酒”的优惠促销活动。现在已知张先生在活动促销期问共喝掉347瓶“红星”啤酒,问张先生最少用钱买了多少瓶啤酒?_____
A: 296B: 298C: 300D: 302
参考答案: B 本题解释:由题可知,6个空瓶可以换一个瓶子里面的啤酒,298÷6=49……4,只有49+298=347。
17、小王练习射击,每次10发。练了若干次之后,小王准备再打一次。如果这次小王打48环,那么平均每次打56环。如果最后这次打68环,那么平均每次打60环。小王共练习了多少次_____
A: 4B: 5C: 6D: 7
参考答案: B 本题解释:【答案】B。解析:平均数问题,(68-48)÷(60-56)=5。
18、银行一年定期存款利率是4. 7%,两年期利率是5. 1%,且利率税扣除20%,某人将1000元存三年,三年后本息共多少元?_____
A: 1074.5B: 1153.79C: 1149.0D: 1122.27
参考答案: D 本题解释:D 解析: 1000×(1+4. 7%×80%)×(1+5. 1%×2×80%)=1122. 27(元)。故本题选D。
19、四年级有4个班,不算甲班其余三个班的总人数是131人;不算丁班其余三个班的总人数是134人;乙、丙两班的总人数比甲、丁两班的总人数少1人,问这四个班共有多少人_____
A: 177B: 178C: 264D: 265
参考答案: A 本题解释:【答案】A,设四个班人数分别为a、b、c、d,b+c+d=131,a+b+c=134,b+c=a+d-1。在这个方程中把前两个方程相加得到(a+d)+2(b+c)=265,再设a+d=x,b+c=y,所以可以解除x=89,y=88,所以总人数为177。
20、红领巾春节慰问小组在确定去敬老院演出的节目单时,遇到如下问题:除夕夜的演出有唱歌、舞蹈、杂技、小品4个节目。如果要求唱歌不排在第4项,舞蹈不排在第3项,杂技不排在第2项,小品不排在第1项,那么,满足上述要求的节目单,共有多少种不同的排法?_____
A: 7B: 9C: 15D: 18
参考答案: B 本题解释:B【解析】 采用穷举法。满足上述要求的节目单共有以下九种不同的排法:(1)唱、小、杂、舞;(2)唱、舞、杂、小;(3)唱、舞、小、杂;(4)舞、小、唱、杂;(5)舞、唱、杂、小;(6)舞、唱、小、杂;(7)杂、小、唱、舞;(8)杂、唱、小、舞;(9)杂、舞、唱、小。故本题正确答案为B。
21、某商店实行促销手段,凡购买价值200元以上的商品可以优惠20%,那么用300元钱在该商店最多可买下价值_____元的商品。
A: 350元B: 384元C: 375元D: 420元
参考答案: C 本题解释:C【解析】300/80%=375元。故选C。
22、甲、乙沿同一公路相向而行,甲的速度是乙的1.5倍,已知甲上午8点经过邮局,乙上午10点经过邮局。问:甲乙在中途何时相遇?_____
A: 8点48分 B: 8点30分 C: 9点 D: 9点10分
参考答案: A 本题解释:A。【解析】设乙的速度为x,甲就是1.5x,当甲8点到邮局时,乙离邮局还有2个小时的路程(2x),甲乙走完2x路程需要2x/(1.5x+x)=4/5小时=48分钟,加上8点,就是8点48分相遇。
23、一车行共有65辆小汽车,其中45辆有空调,30辆有高级音响,12辆兼而有之。既没有空调也没有高级音响的汽车有几辆?_____
A: 2;B: 8;C: 10;D: 15;
参考答案: A 本题解释:【答案解析】:选A,车行的小汽车总量=只有空调的+只有高级音响的+两样都有的+两样都没有的,只有空调的=有空调的-两样都有的=45-12=33,只有高级音响的=有高级音响的-两样都有的=30-12=18,令两样都没有的为x,则65=33+18+12+x=>x=2
24、某校人数是一个三位数,平均每个班级36人,若将全校人数的百位数与十位数对调,则全校人数比实际少180人,那么原校人数最多可以达到多少人:_____
A: 900B: 936 C: 972D: 990
参考答案: C 本题解释:C。【解析】根据能被36整除和百位十位对调后相差180两个条件,用代入法可很快求得。
25、五个瓶子都贴有标签,其中恰好贴错了三个,贴错的可能情况有多少种?_____
A: 60B: 46C: 40D: 20
参考答案: D 本题解释:D【解析】根据题意贴错三个,贴对两个。首先从五个瓶子中选出3个的种类为C35=10种,这三个瓶子为贴错标签的,这三个瓶子贴错标签的有两种情况。所以五个瓶子中贴错三个标签的情况有10×2=20种。
26、学校安排学生住宿,每个房间住6人还有2个空房间,如果每个房间住5人,则有1个房间里住的是3人,问:学校共有( )个房间?
A: 8B: 9C: 10D: 11
参考答案: C 本题解释:C【解析】假设学校有学生χ人,有房间y间,所以有6(y-2)=χ,5y-2=χ,由此可以得至χ=48,y=10。
27、小明和小红积极参加红领巾储蓄活动,把零用钱存入银行。小明存入银行的钱比小红少20元。如果两人都从银行取出12元买学习用品,那么小红剩下的钱是小明的3倍。问两人原来共存入银行多少元?_____
A: 44B: 64C: 75D: 86
参考答案: B 本题解释:【答案】B。解析:设小明原来存了Y元,则小红存了Y+20元,根据题意得(Y-12)×3=(Y+20-12),解得Y=22元。因此两人原来共存了2Y+20=64元,故正确答案为B。
28、甲、乙、丙三队要完成A,B两项工程,B工程工作量比A工程的工作量多1/4 ,甲、乙、丙三队单独完成A工程所需时间分别是20天、24天、30天。为了同时完成这两项工程,先派甲队做A工程,乙、丙两队共同做B工程,经过几天后,又调丙队与甲队共同完成A工程,那么,丙队甲队合做了多少天? _____
A: 18B: 15C: 10D: 3
参考答案: D 本题解释:【解析】D。解析:三队完成这项工程一共用了天,乙队一直在做B工程,一共做了
,则B工程剩下的
为丙做的,故丙队与乙队合做了
天,与甲队合做了18-15=3天。
29、阳光下,电线杆的影子投射在墙面及地面上,其中墙面部分的高度为1米,地面部分的长度为7米。甲某身高1.8米,同一时刻在地面形成的影子长0.9米。则该电线杆的高度为_____。
A: 12米B: 14米C: 15米D: 16米
参考答案: C 本题解释:【答案】C。解析:
30、在一条公路旁有4个工厂,每个工厂的人数如图所示,且每两厂之间距离相等。现在要在公路旁设一个车站,使4个工厂的所有人员步行到车站总路程最少,这个车站应设在几号工厂门口?_____
A: 1号B: 2号C: 3号D: 4号
参考答案: C 本题解释:C【解析】 一般情况车站设在几个工厂的中间,即设在2号工厂或3号工厂门口。由于各厂人数不同,还是应通过计算再决定车站在哪一个工厂门口合适。如果设车站建在2号工厂门口,且设每两个工厂之间距离为1千米,那么4个工厂所有人员步行总路程为:1×100+1×80+2×215=100+80+430=610(千米)如果车站设在3号工厂门口,每两个工厂之间的距离为1千米,那么4个工厂所有人员步行总路程为:1×100×2+1×120+1×215=200+120+215=535(千米)显然,车站设在3号厂门口,才能使4个工厂所有人员步行到车站总路程最少。故本题选C。
31、某次考试100道选择题,每做对一题得1.5分,不做或做错一题扣1分,小李共得100分,那么他答错多少题_____
A: 20B: 25C: 30D: 80
参考答案: A 本题解释:答案:A 解析:不做或做错的题目为(100×1.5-100)÷(1.5+1)=20。
32、甲、乙、丙三人买水果,甲买了3千克苹果和2千克梨,乙买了4千克苹果和3千克梨,丙买了3千克苹果和4千克梨。乙比甲多花7元,甲比丙少花5元。问甲、乙、丙共花了多少钱?_____。
A: 92.5元B: 112.5元C: 88.0元D: 67.5元
参考答案: D
33、蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀,现在这三种小虫共18只,有118条腿和18对翅膀,蜘蛛,蜻蜓,蝉各几只_____
A: 5、5、8B: 5、5、7C: 6、7、5D: 7、5、6
参考答案: A 本题解释:【答案】A。解析:这是道复杂的“鸡兔同笼”问题,首先,蜻蜓和蝉都是6条腿,数腿的时候可以放在一起考虑,因此蜘蛛有(118—6×18)÷(8—6)=5只,因此蜻蜓和蝉共有18—5=13只,从而蜻蜓有(18—1×13)÷(2—1)=5只,蝉有13—5=8只。
34、一个正方体木块放在桌子上,每一面都有一个数,位于对面两个数的和都等于13,小张能看到顶面和两个侧面,看到的三个数和为18;小李能看到顶面和另外两个侧面,看到的三个数的和为24,那么贴着桌子的这一面的数是多少_____
A: 4B: 5C: 6D: 7
参考答案: B 本题解释:【答案】B。解析:小张、小李二人看到的数加起来一共为2组对面加上2倍的顶面,因此顶面为(18+24-13×2)÷2=8,底面为13-8=5.
35、一条线段中间另有6个点,则这8个点可以构成多少条线段?_____
A: 15B: 12C: 28D: 36
参考答案: C 本题解释:C。相邻两点构成线段8-1=7中间隔一点构成线段8-2=6类推距离最远两点(两端点)构成线段8-7=1,1+2+3+.+6+7=(1+7)*7/2=28选C
36、两个人做一种游戏:轮流报数,报出的数不能超过8(也不能是0),把两个人报出的数连加起来,谁报数后,加起来的是88(或88以上的数),谁就获胜。让你先报数,你第一次报几就是一定会获胜?_____
A: 3B: 4C: 7D: 9
参考答案: C 本题解释: C【解析】 第一次报7一定会赢。以后另一个人报几,第一次报数者可以报这个数与9的差。这样一来,每一次报数都报出的数连加起来都是9的倍数加7;每一次另一个人报数以后,报出的数连加起来都不是9的倍数加7。而88除以9,余数是7,所以第一次报7者一定胜利。
37、如果a、b均为质数,且3a+7b=41,则a+b=_____
A: 5B: 6C: 7D: 8
参考答案: C 本题解释: 【答案】C。解析:a=2,b=5符合题意,选C。
38、如是2003除以一个两位数后,所得余数最大,则这个两位数为_____。
A: 92B: 82C: 88D: 96
参考答案: D 本题解释:D【解析】 2003÷99=20……2323+20×3=83所以商是20时,余数最大是83,此时除数是99-3=96。2003÷95=21……88+21×3=71所以商是21时,余数最大是71,此时除数是95-3=92。2003÷91=22……11+22×3=67所以商是22时,余数最大是67,此时除数是91-3=88。2003÷87=23……22+23×3=71所以商是23时,余数最大是71,此时除数是87-3=84。当除数小于84时,余数小于83。综上所述,余数最大是83,此时除数AB=96。
39、甲乙丙丁四个数的和为43,甲数的2倍加8,乙数的3倍,丙数的4倍,丁数的5倍减去4,都相等,问这四个各是多少?_____
A: 14 12 8 9B: 16 12 9 6C: 11 10 8 14 D: 14 12 9 8
参考答案: D 本题解释:D。【解析】根据4个数的和为43、前三个数的关系,用带入法很容易得到答案。解:设得到的四个数为x,得(x-8)÷2+x÷3+x÷4+(x+4)÷5=43,解得:x=36,甲:(36-8)÷2=14,乙:36÷3=12,丙:36÷4=9,丁:(36+4)÷5=8.答:甲为14,乙为12,丙为9,丁为8.
40、有8种颜色的小球,数量分别为2、3、4、5、6、7、8、9,将它们放进一个袋子里面,问拿到同颜色的球最多需要几次?_____
A: 6B: 7C: 8D: 9
参考答案: D 本题解释:【答案解析】解析:"抽屉原理"问题。先从最不利的情况入手,最不利的情况也就使次数最多的情况。即8种小球,每次取一个,且种类不相同(这就是最不利的情况)。然后任取一个,必有重复的,所以是最多取9个。
41、一杯糖水,第一次加入一定量的水后,糖水的含糖百分比变为15%;第二次又加入同样多的水,糖水的含糖百分变比为12%;第三次再加入同样多的水,糖水的含糖百分比将变为多少?_____
A: 8%B: 9%C: 10%D: 11%
参考答案: C 本题解释:【答案】C。解析:设第一次加水后糖水总量为100,糖为100×15%=15,则第二次加水后糖水变为15÷12%=125,所以每次加入的水为125-100=25,故第三次加水后糖水的含糖百分比为15÷(125+25)=10%。
42、银行存款年利率为2.5%,应纳利息税20%,原存1万元1年期,实际利息不再是250元,为保持这一利息收入,应将同期存款增加到_____元。
A: 15000B: 20000C: 12500D: 30000
参考答案: C 本题解释:C。【解析】令存款为x,为保持利息不变,250=x×2.5%×(1-20%)=>x=12500。
43、四个相邻质数之积为17 017,他们的和为_____。
A: 48B: 52C: 61D: 72
参考答案: A 本题解释:【答案】A。解析:l7017=l7×l3×11×7,它们的和为48。
44、李华步行以每小时4千米的速度从学校出发到20.4千米外的冬令营报到。0.5小时后,营地老师闻讯前往迎接,每小时比李华多走1.2千米。又过了1.5小时,张明从学校骑车去营地报到。结果3人同时在途中某地相遇。问:张明每小时的速度是多少千米?_____
A: 25B: 50C: 30D: 20
参考答案: D 本题解释:D老师速度=4+1.2=5.2千米/时,与李华相遇时间是老师出发后(20.4-4×0.5)÷(4+5.2)=2小时,相遇地点距离学校4×(0.5+2)=10千米,所以张明的速度=10÷(2-1.5)=20千米/时。
45、有苹果,桔子各一筐,苹果有240个,桔子有313个,把这两筐水果平均分给一些小朋友,已知苹果分到最后余2个,桔子分到最后还余7个,求最多有多少个小朋友参加分水果?_____
A: 14 B: 17 C: 28 D: 34
参考答案: D 本题解释:【答案】D。解析:240-2=238,313-7=306,此题即要求238和306的最大公约数,238=2×7×17、306=2×3×3×17,可知最大公约数是34。
46、一个两位数等于其个位数字的平方与十位数字之和,这个两位数是_____。
A: 10B: 76C: 89D: 45
参考答案: C 本题解释:C
47、食堂购进200斤含水量为90%的西红柿,3天后再测试发现西红柿的含水量变为80%,那么这批西红柿的总重量共减少了_____千克。
A: 100B: 10C: 20D: 50
参考答案: D 本题解释:D【解析】西红柿的水分蒸发,但水分之外的其他物质的重量并没有改变,由此可知现在西红柿的重量为:200×(1-90%)÷(1-80%)=100(斤)。那么这批西红柿的重量共减少了200-100=100(斤)=50(千克)。故本题答案为D。
48、用1,2,3,4,5这五个数字组成没有重复数字的自然数,从小到大顺序排列:1,2,3,4,5,12,……,54321。其中,第206个数是_____
A: 313 B: 12345 C: 325 D: 371
参考答案: B 本题解释:B。由1、2、3、4、5组成的没有重复数字的一位数共有;二位数共有个
;三位数共有个
;四位数共有个
;至此由1、2、3、4、5组成的没有重复数字的四位以内的数共有5+20+60+120=205个;那么第206个数是第一个由1、2、3、4、5组成的五位数,即最小的五位数12345。
49、小张从华兴园到软件公司上班要经过多条街道(软件公司在华兴园的东北方)。假如他只能向东或者向北行走,则他上班不同走法共有()。
A: 12种B: 15种C: 20种D: 10种
参考答案: D 本题解释:【答案】D。解析1:图中每个交叉点上的数字表示到达该点的方法数。只能向东或向北行走,则到达某点的方法数等于其西边一点和南边一点方法数的加和。因此到达软件公司有10种走法,正确答案为D。解析2:只能向东或者向北行走,因此从华兴园到软件公司只需要向东走2个格,向北走3个格即可。可转化为朝着一个方向走的5步,每一步都有2种选择:向东或者向北,则到软件园的走法有5×2=10种。故正确答案为D。
50、在棱长为12厘米的正方体的面的中心挖洞,并通到对面。洞口是边长为3厘米的正方形。它现在的表面积是多?_____
A: 846平方厘米B: 986平方厘米C: 1134平方厘米D: 1324平方厘米
参考答案: C 本题解释:【解析】C。表面积=6×12×12-6×3×3+6×3×4×[(12-3)÷2]=1134平方厘米。
51、用1个70毫升和1个30毫升的空容器盛取20毫升的水到水池A中,并盛取80毫升的酒精到水池B中,倒进或倒出某个容器都算一次操作,则最少需要经过几次作?_____
A: 15B: 16C: 17D: 18
参考答案: A 本题解释:答案:A【解析】设70毫升的容器为X,30毫升的容器为Y。1.倒满Y,30毫升;2.Y倒入X至Y空,X30毫升;3.倒满Y,30毫升;4.Y倒入X至Y空,X60毫升;5.倒满Y,30毫升;6.Y倒入X至X满,X70毫升,Y20毫升;7.Y倒入水池A中。8.倒满X,70毫升;9.X倒入Y至Y满,X40毫升,Y30毫升;10.Y全倒掉;11.X倒入Y至Y满,X10毫升,Y30毫升;12.Y全倒掉;13.X倒入水池B中至X空;14.X倒满,70毫升;15.X倒入水池B中至X空。15次即可完成,答案为A项。
52、某人在雅虎上申请了一个邮箱,邮箱密码是由0至9中任意4个数字组成,他任意输入4个数字,输入正确密码的概率是_____。
A: 10 B: 10 C: 10 D: 10
参考答案: B 本题解释:B[解析]正确的密码只有一个,这10个数字的组合共有10个,所以答案是B。
53、小强前三次的数学测验平均分是88分,要想平均分达到90分以上,他第四次测验至少要得多少分?_____
A: 98分B: 92分C: 93分D: 96分
参考答案: D 本题解释:【答案】D。解析:如果第四次测验后平均分数达到90分,则总分为90×4=360(分),第四次测验至少要360-88×3=96(分)。故正确答案为D。
54、药厂使用电动研磨器将一批晒干的中药磨成药粉。厂长决定从上午10点开始,增加若干台手动研磨器进行辅助作业。他估算如果增加2台,可在晚上8点完成,如果增加8台,可在下午6点完成。问如果希望在下午3点完成,需要增加多少台手工研磨器?_____
A: 20B: 24C: 26D: 32
参考答案: C 本题解释:【答案】C。解析:设原有电动研磨器为N台,需要增X台手工研磨器,根据牛吃草公式有:Y=(N+2)10;Y=(N+8)8,解得N=22,Y=240;代入Y=(N+X)5解得X=26,故选择C选项。
55、小新做一道加法题,由于粗心将一个加数万位上的3看成8,百位上的1看成7,个位上的9看成6,算得的结果是95050。则这道加法题的正确答案本应是_____。
A: 44447B: 45453C: 44453D: 45405
参考答案: C 本题解释:C【解析】本题只要找出错看的加数和本来的加数之间的差值,用错误结果加上少加的数,减去多加的数,即可得出正确结果。即正确答案=95050-(80000-30000)-(700-100)+(9-6)=95050-50000-600+3=44453由此可知本题正确答案为C。
56、有四个数,其中每三个数的和分别是45,46,49,52,那么这四个数中最小的一个数是多少_____
A: 12B: 18C: 36D: 45
参考答案: A 本题解释:【答案】A。解析:把四个数加起来,正好相当于把每个人算了3次,因此四人的作品那个岁数为(45+46+49+52)÷3=64,那么年龄最小的为64-52=12岁。
57、已知29832983…298302能被18整除,那么n的最小值是_____。
A: 4B: 5C: 6D: 7
参考答案: A 本题解释:【解析】18=2×9,这个多位数的个位上是2,满足被2整除,因此,只需考虑个位数字之和能否被9整除的问题。(2+9+8+3)×n+0+2=22n+2是9的倍数,22×4+2=90=9×10,那么n的最小值为4。
58、2 年前甲年龄是乙年龄的2 倍,5 年前乙年龄是丙年龄的1/3,丙今年11 岁,问甲今年几岁?_____
A: 12B: 10C: 9D: 8
参考答案: A 本题解释: 【解析】五年前乙是(11-5)/3=2岁,所以今年是7岁,两年前是5岁。所以2年前甲是10岁,今年是12岁,选A。
59、某商场举行周年让利活动,单件商品满300减180元,满200减100元,满100减40元;若不参加活动则打5.5折。小王买了价值360元,220元,150元的商品各一件,最少需要多少元钱?_____
A: 360B: 382.5C: 401.5D: 410
参考答案: B 本题解释:【答案】B。解析:如下表:因此最少需要180+120+82.5=382.5元。
60、办公室有甲、乙、丙、丁4位同志,甲比乙大5岁,丙比丁大2岁。丁三年前参加工作,当时22岁。他们四人现在的年龄之和为127岁。那么乙现在的年龄是_____
A: 25岁B: 27岁C: 35岁D: 40岁
参考答案: C 本题解释:答案:C【解析】根据题意,丁现在25岁,丙现在27岁,甲和乙共127-27-25=75岁,甲比乙大5岁,所以乙现在(75-5)÷2=35岁。
61、某小学五年级同学分成69个小组,每组3人,去参加植树劳动。在这些小组中,只有1名男同学的共有15个小组,至少有2名女同学的共有36个小组,有3名男同学的小组与有3名女同学的小组同样多。问这所小学五年级共有男同学多少名?_____
A: 102B: 136C: 144D: 158
参考答案: A 本题解释:【解析】A。有1名男生2名女生的小组有15个,则有3名女生的小组有36-15=21个,所以有3名男生的小组也有21个,只有1名女生的小组有69-15-21-21=12个,故男生一共有15+12×2+21×3=102名。
62、已知一列货运火车通过500米的隧道用了28秒,接着通过374米的隧道用了22秒,这列货运火车与另一列长96米的客运火车相对而过,用了4秒钟,问这列客运火车的速度是多少? _____
A: 21米/秒B: 25米/秒C: 36米/秒D: 46米/秒
参考答案: B 本题解释:B。通过题干前两个条件可以先求出货运火车的速度为(500-374)÷(28-22)=21米/秒,则该货运火车的长度为21×22-374=88米。货车与客车相对而过,此时总路程是两车车长的总和,则两车的速度和为(96+88)÷4=46米/秒,客车的速度即为46-21=25米/秒。
63、四个相邻质数之积为17017,他们的和为_____
A: 48B: 52C: 61D: 72
参考答案: A 本题解释:答案:A【解析】17017分解因数为17×13×11×7,他们的和为48。
64、甲乙两人从相距1 350米的地方,以相同的速度相对行走,两人在出发点分别放下1个标志物。再前进10米后放下3个标志物。前进10米放下5个标志物,再前进10米放下7个标志物,以此类推。当两个相遇时,一共放下了几个标志物? _____
A: 4 489B: 4 624C: 8 978D: 9248
参考答案: D 本题解释:【答案】D 解析∶相遇时每人行走了675米,最后一次放标志物是在第670米处,放了1+(670÷10)×2=135个,所有标志物个数是(1+135)×68÷2×2=9248。
65、某试卷共25题,答对的,一题得4分;答错或不答的,一题扣1分,小王得了60分,则小王答对了多少题?_____
A: 14B: 15C: 16D: 17
参考答案: D 本题解释: D [解析] 设答对了x道题,则未答对的题为(25-x)题,可得4x-(25-x)×1=60,解得x=17。故本题选D。
66、将一块三角形绿地沿一条直线分成两个区域,一块为三角形,一块为梯形,已知分出的三角形区域的面积为1.2亩,梯形区域的上、下底边分别为80米、240米,问分出的梯形区域的面积为多少亩?_____
A: 9.6B: 11.2C: 10.8D: 12.0
参考答案: A 本题解释:A。
67、如果当“张三被录取的概率是1/2,李四被录取的概率是1/4时,命题:要么张三被录取,要么李四被录取” 的概率就是_____
A: 1/4 B: 1/2 C: 3/4D: 4/4
参考答案: B 本题解释:B。【解析】要么张三录取要么李四录取就是2人不能同时录取且至少有一人录取,张三被录取的概率是1/2,李四被录取的概率是1/4,(1/2) ×(3/4)+(1/4) ×(1/2)=3/8+1/8=1/2其中(1/2) ×(3/4)代表张三被录取但李四没被录取的概率,(1/2) ×(1/4)代表张三没被录取但李四被录取的概率。李四被录取的概率为1/4=>没被录取的概率为1-(1/4)=3/4。
68、A、B、C、D、E,5个小组开展扑克牌比赛,每两个小组之间都要比赛一场,到现在为止,A组已经比赛了4场,B组已经比赛了3场,C组已经比赛了2场,D组已经比赛了1场,问E组已经比赛了几场()
A: oB: 1C: 2D: 3
参考答案: C 本题解释:C【解析】A组已经比赛了4场,说明A组与B、C、D、E这4个组都进行过比赛;D组已经比赛了1场,则根据上一个条件,D组只与A组进行过比赛;B组已经比赛了3场,则根据上一个条件,B组只与A、C、E组进行过比赛;C组已经比赛了2场,则根据上面的条件,C组只能与A、B组进行过比赛;所以E组与A、B组进行过比赛。
69、1980年,爸爸的年龄是哥哥和弟弟年龄和的4倍;1988年,爸爸的年龄是哥哥和弟弟年龄和的2倍;那么,爸爸出生在哪一年?_____
A: 1932B: 1928C: 1930D: 1936
参考答案: A
70、若一个边长为20厘米的正方体表面上挖一个边长为10厘米的正方体洞,问大正方体的面积增加了多少? _____
A: 100cm2B: 400cm2C: 500cm2D: 600cm2
参考答案: B 本题解释:B。【解析】正方体6个面,在表面上挖一个边长为10厘米的正方体洞,使得大正方体表面积发生改变:增加的面为正方体洞凹进去的五个面,同时又使大正方体的表面积减少一个正方体洞面面积。因此,大正方体面积最终增加:10*10*5-10*10=400cm2
71、人工生产某种装饰用珠链,每条珠链需要珠子25颗,丝线3条,搭扣1对,以及10分钟的单个人工劳动。现有珠子4880颗,丝线586条,搭扣200对,4个工人。则8小时最多可以生产珠链_____。
A: 200条B: 195条C: 193条D: 192条
参考答案: D 本题解释:答案:D。4个工人8小时的人工劳动是1920分,而10分钟的单个人工劳动生产一条珠链,故可生产1920÷10=192(条)。
72、除以5余1,b除以5余4,如果3a >b,那么3a-b除以5余几? _____
A: 1B: 2C: 3D: 4
参考答案: D 本题解释:D【解析】3a 除以5 应余1×3=3,已知b 除以5 余4,则3a-b 除以5 余3-4+5=4。故选D。
73、某班学生不到50人,在一次考试中,有1/7人得优,1/3人得良,1/2人及格,其余的均不及格,那么不及格的人数是_____
A: 1 B: 2 C: 3 D: 4
参考答案: A 本题解释: A。通过题干可知,该班级最少人数应为7、3、2的最小公倍数,又因为不能超过50人,所以该班人数为7×3×2=42人。那么不及格的人数为42…61421=1。故正确答案为A。
74、有砖26块,兄弟二人争着去挑。弟弟抢在前面,刚摆好砖,哥哥赶到了。哥哥看弟弟挑的太多,就抢过一半。弟弟不肯,又从哥哥那儿抢走一半。哥哥不服,弟弟只好给哥哥5块,这时哥哥比弟弟多挑2块。问最初弟弟准备挑多少块?_____
A: 16 B: 15 C: 14 D: 13
参考答案: A 本题解释:A。【解析】先算出最后各挑几块:(和差问题)哥哥是(26+2)÷2=14,弟弟是26-14=12,然后来还原:1.哥哥还给弟弟5块:哥哥是14-5=9,弟弟是12+5=17;2.弟弟把抢走的一半还给哥哥:抢走了一半,那么剩下的就是另一半,所以哥哥就应该是9+9=18,弟弟是17-9=8;3.哥哥把抢走的一半还给弟弟:那么弟弟原来就是8+8=16块。
75、1996+1997+1998+1999+2000+2001等于_____。
A: 11986B: 11991C: 12987D: 12989
参考答案: B 本题解释: B 【解析】原式=(2000-4)+(2000-3)+(2000-2)+(2000-1)+(2000+1)=2000×6-4-3-2+1=12000-9=11991。
76、某单位职工24人中,有女性11人,已婚的有16人。在婚的16人中有女性6人。问这个单位的未婚男性有多少人?_____
A: 1B: 3C: 9D: 12
参考答案: B 本题解释:答案:B【解析】男性人数为:24-11=13,已婚男性为l6-6=10(人),因此,未婚男性为13-10=3(人),故选B。
77、将1~9九个自然数分成三组,每组三个数,第一组三个数之积是48,第二组三个数之积是45,三组数字中数字之和最大是多少?_____
A: 15B: 17C: 18D: 20
参考答案: C 本题解释:【答案】C。解析:显然要对48和45进行乘法拆分,显然45的可拆分情况较少,故先拆分45=1×5×9,由此可知48=2×3×8=2×4×6两种拆分情况,由此可知第三组三个数对应48的拆分也有两种情况:4、6、7;3、7、8。于是可知三组数字中加和最大的一组为3、7、8,加和为18。故正确答案为C。
78、四个连续自然数的积为3024,它们的和为_____
A: 26B: 52C: 30D: 28
参考答案: C 本题解释:【解析】C。因式分解得,原式=33×24×7,可知这几个自然数是6、7、8、9。
79、某公司计划采购一批电脑,正好赶上促销期,电脑打9折出售,同样的预算可以比平时多买10台电脑。问该公司的预算在平时能多买多少台电脑?_____
A: 60.B: 70C: 80D: 90
参考答案: D 本题解释:【答案】D。解析:设平时可以购买x台,电脑打折前价格为100,则打折后为90,依题意100x=90(x+10),解得=90。
80、甲、乙两艘游轮同时从秦皇岛和天津出发,甲轮从天津出发,开出2天后在海上与乙轮相遇,一天后到达秦皇岛,而乙轮则于相遇后4天到达天津,假设甲、乙两轮的时速保持不变,甲轮的速度是乙轮的几倍?_____
A: 1倍B: 2倍C: 3倍D: 2.5倍
参考答案: B 本题解释:B【解析】甲走完全程用3天,乙走完全程用6天,故甲速度是乙的2倍。
81、某船第一次顺流航行21千米又逆流航行4千米,第二次在同一河道中顺流航行12千米,逆流航行7千米,结果两次所用的时间相等。则顺水船速与逆水船速之比是_____。(设船本身的速度及水流的速度都是不变的)
A: 4∶1B: 3∶1C: 2∶1D: 9∶1
参考答案: B 本题解释:B 【解析】船第一次顺流航行21千米,第二次顺流航行12千米,21-12=9,也就是第一次顺流多用了航行9千米所用的时间,第二次逆流比第一次多用时间于3千米的航行上,总的两次时间相等。就是顺流9千米用的时间等于逆流3千米所用的时间。顺流船速:逆流船速=(21-12)∶(7-4)=3∶1,即顺水船速是逆水船速的3倍。
82、甲、乙两地相距100千米,张先骑摩托车从甲出发,1小时后李驾驶汽车从甲出发,两人同时到达乙地。摩托车开始速度是50千米/小时,中途减速为40千米/小时。汽车速度是80千米/小时。汽车曾在途中停驶10分钟,那么张驾驶的摩托车减速时是在他出发后的多少小时?_____
A: 1B: 3/2C: 1/3D: 2
参考答案: C 本题解释:C解来源:91 考试网析:汽车行驶100千米需100÷80=5/4(小时),所以摩托车行驶了5/4+1+1/6=29/12(小时)。如果摩托车一直以40千米/小时的速度行驶,29/12小时可行驶96(2/3)千米,与100千米相差10/3千米。所以一开始用50千米/小时的速度行驶了10/3÷(50-40)=1/3(小时)。故本题选C.
83、某月刊每期定价5元。某单位一部分人订半年,另一部分人订全年,共需订费480元;如果订半年的改订全年,订全年的改订半年,那么共需420元。共有多少人订了这份期刊?
A: 25B: 20C: 15D: 10
参考答案: D 本题解释:D。所有人订一年半期刊所花的钱为(480+420)元,则订了这份期刊的人数为(480+420)+[5×(6+12)]=10个人。
84、某班共有50名学生参加数学和外语两科考试,已知数学成绩及格的有40人,外语成绩及格的有25人,据此可知数学成绩及格而外语成绩不及格者_____。
A: 至少有10人B: 至少有15人C: 有20人D: 至多有30人
参考答案: B 本题解释:答案:B【解析】这是一个集合问题,首先可排除答案D,因为与已知条件“外语及格25人”即“外语不及格25人”不符;其次排除C,因为仅以外语及格率为50%推算数学及格者(40人)中外语不及格人数为40×50%=20(人),缺乏依据,实际上,数学及格者中外语不及格的人数至少为25-(50-40)=15人,答案为B。
85、甲从某地匀速出发,一段时间后,乙从同一地点以同样的速度同向前进,在K时刻乙距离起点30米,当乙走到甲在K时刻的位置时,甲离起点108米,问,此时乙距起点多少米?_____
A: 39B: 69C: 78D: 138
参考答案: B 本题解释:正确答案:B解析:本题属于路程问题。K时刻之后,甲、乙走过的距离相等。若K时刻后,乙走过的距离为X,则2X+30=108解得X=39。此时乙和起点的距离为:30+39=69米。本题画线段图,可直接解出。故答案为B。
86、某车间从3月2日开始每天调入人,已知每人每天生产~件产品,该车间从月1日至3月21日共生产840个产品.该车间应有多少名工人? _____
A: 20B: 30C: 35D: 40
参考答案: B 本题解释:【答案】B。解析:从3月2日开始调入的每一个人生产的产品的个数正好组成以1为公差的等差数列20,19,18,……1,得调入的人生产的总产品数是:(20+1)×20÷2=210(个),所以原有工人生产的产品数=840-210=630(个),每人每天生产一个,所以工人数=630/21=30(个)。
87、100张多米诺骨牌整齐地排成一列,依顺序编号为1、2、3……99,100.第一次拿走所有奇数位置上的骨牌,第二次再从剩余骨牌中拿走所有奇数位置上的骨牌,依此类推。请问最后剩下的一张骨牌的编号是多少?_____
A: 32 B: 64 C: 88 D: 96
参考答案: B 本题解释:【解析】本题关键是理解题意,第一次拿走的是所有奇数,第二次拿走的各项是2分别乘以1、3、5、7、9……,依次类推,每拿走一次后,剩下的第一个数是20、21,22、23、24……,在100之内要使2n取值最大,所以最后剩下的是64,选B.
88、一袋白糖,第一次用去0.3斤,第二次用去余下的3/4,这时袋内还有白糖0.2斤,该袋糖原有多少斤?_____
A: 1.1B: 0.5C: 1.5D: 2
参考答案: A 本题解释: A 【解析】0.2÷(1-3/4)+0.3=1.1。
89、小王的爷爷比奶奶大2岁,爸爸比妈妈大2岁,全家五口人共200岁。已知爷爷年龄是小王的5倍,爸爸年龄在4年前是小王的4倍,则小王的爸爸今年多少岁? _____
A: 40B: 36C: 32D: 44
参考答案: B 本题解释:B。假设奶奶和爷爷一样大,妈妈和爸爸一样大,全家年龄和是200+4=204岁,这样爷爷、奶奶的年龄和是10个小王的年龄。而爸爸的年龄是4年前小王的4倍多4岁,换句话说,就是比现在小王年龄的4倍少4×4-4=12岁,妈妈也比现在小王的年龄的4倍少12岁,这样现在全家人的年龄和204+12+12=228岁,则小王的年龄为228÷(5×2+4×2+1)=12岁,爸爸的年龄为(12-4)×4+4=36岁。
90、定义:①群体互补效应:由不同年龄、专业、智能水平、气质类型的人才有机地组成一个结构合理的人才群体,达到知识互用、能力互补,使只有专才的个体,变成多能的人才群。②群体协调效应:在结构合理的人才群体中,逐步形成了群体每个成员共同遵守的良好的道德规范和传统作风,以此调节和协调群体中个体与个体、个体与群体、群众与社会的关系,并影响和控制整个群体,使群体的力量和功能得到维护和加强。③群体感应效应:在结构合理的人才群体中,人才之间在目标上志同道合,在学风上互相感染,在学术上互相影响,同心同德,紧密团结,创新意识和创造思维不断激化和强化,形成对人才创造特别有利的“微型气候”。典型例证:(1)某大学有效整合资源,在校内外组织多方面人才,团结协作,集体攻关。(2)正因为好大学有优良的校风和传统,所以人人才都想上好大学。(3)小李做事低调,从不张扬。上述典型例证与定义存在对应关系的数目有_____。
A: 0个B: 1个C: 2个D: 3个
参考答案: C 本题解释:【答案】C。解析:第一步:抓住每个定义中的关键词群体互补效应:关键词强调“不同年龄、专业、智能水平、气质类型的人才”、“知识互用、能力互补”。群体协调效应:关键词强调“群体每个成员共同遵守”、“调节和协调”。群体感应效应:关键词强调“目标上志同道合,在学风上互相感染,在学术上互相影响”。第二步:逐一分析例证与定义间的关系例证(1)大学组织了多方面的人才,形成群体互补效应,对应定义①,例证(2)好大学因为有优良的校风和传统而受欢迎,属于群体感应效应,对应定义③;例证(3)讲的是小李的个体行为,与上面的定义均不相符。例证与定义存在对应关系的数目有2个,故正确答案为C。
91、用一个尽量小的自然数乘以1999,使其乘积的尾数出现六个连续的9,求这个乘积。_____
A: 5999999B: 4999999C: 3999999D: 2999999
参考答案: C 本题解释:【答案】C。解析:解析1:将各项代入检验,只有3999999能被1999整除,故正确答案为C。解析2:1999=2000-1,2001=2000+1,因此1999×2001=(2000-1)×(2000+1)=2000×2000-1=3999999。故正确答案为C。
92、在一条公路上每隔100公里有一个仓库,共有5个仓库,一号仓库存有10吨货物,二号仓库存有20吨货物,五号仓库存有40吨货物,其余两个仓库是空的。现在要把所有的货物集中存放在一个仓库里,如果每吨货物运输1公里需要0?5元运输费,则最少需要运费_____。
A: 4500元B: 5000元C: 5500元D: 6000元
参考答案: B 本题解释:[解析]正确答案为B。根据题意,一至五号仓库为依次排列,最有效的货物集中方式为把一和二号仓库中的货物集中到五号仓库中,则总费用为0.5×(300×20+400×10)=5000元,所以选择B项。
93、100人列队报数,报单数的离队,留下的再依次报数,报单数的再离队,这样重复多次,直到最后只留下一个人,请问此人在第一次报数时是第几号?_____
A: 32B: 50C: 64D: 100
参考答案: C 本题解释:C。第一次报数后,留下队员的号数是:2,4,6,8…96,98,100,均为的倍数;第二次报数后,留下队员的号数是:4,8,12…96,100,均为的倍数;第五次报数之后,留下队员的号数是的倍数;第六次报数之后,留下队员的号数四的倍数可见最后余下的一人在第一次报数时是第64号。
94、李师傅加工一批零件,如果每天做50个,要比计划晚8天完成;如果每天做60个,就可提前5天完成,这批零件共有多少个?_____
A: 3500个 B: 3800个 C: 3900个 D: 4000个
参考答案: C 本题解释:C。【解析】每天做50个,到规定时间还剩50×8=400个。每天做60个,到规定时间还差60×5=300个。规定时间是:(50×8+60×5)/(60-50)=70天零件总数是:50×(70+8)=3900个。
95、有300名求职者参加高端人才专场招聘会,其中软件设计类、市场营销类、财务管理类和人力资源类分别有100、80、70、50人,问至少有多少人找到工作才能保证一定有70名找到工作的人专业相同? _____
A: 71 B: 119 C: 258 D: 277
参考答案: C 本题解释:【答案】C 【解析】最差的情况:软件设计类、市场营销类、财务管理类和人力资源类找到工作的人数分别为69人、69人、69人、50人。此时再有任意1人即可保证一定有70名找到工作的人专业相同,即至少有69+69+69+50+1=258人。
96、某个月有5个星期三,并且第三个星期六是18号。请问以下不能确定的答案是_____
A: 这个月有31天B: 这个月最后一个星期日不是28号C: 这个月没有5个星期六D: 这个月有可能是闰年的2月份
参考答案: A
97、18名游泳运动员,有8名参加仰泳,有10名参加蛙泳,有12名参加自由泳,有4名既参加仰泳又参加蛙泳,有6名既参加蛙泳又参加自由泳,有5名既参加仰泳又参加自由泳,有2名这3个项目都参加。这18名游泳运动员中,只参加1个项目的有多少名?_____
A: 5B: 6C: 7D: 4
参考答案: B 本题解释: 【解析】B。利用文氏图可以迅速准确地求得答案。注意本题目的陷阱,18名运动员并不是都参加了项目。由图可知;只参加一个项目的有l+2=3=6名。
98、某城市9月平均气温为28.5度,如当月最热日和最冷日的平均气温相差不超过10度,则该月平均气温在30度及以上的日子最多有多少天?_____
A: 24B: 25C: 26D: 27
参考答案: B 本题解释:设该月的日平均气温在30度及以上的日子为2天,要使其最多,则最热日的气温应尽可能地接近30度,故可假设最热日的气温都是30度,最冷日的气温都是20度,根据题意可知,30x+20×(30一x)≤28.5×30→x≤25.5。故选B。
99、A大学的小李和B大学的小孙分别从自己学校同时出发,不断往返于A、B两校之间。现已知小李的速度为85米/分,小孙的速度为105米/分,且经过12分钟后两人第二次相遇。问A,B两校相距多少米?_____
A: 1140米B: 980米C: 840米D: 760米
参考答案: D 本题解释:易知到第二次相遇时,两人合起来走过的距离恰为A、B两校距离的3倍,因此A、B两校相距(85+105)×12÷3=760(米)。故选D。
100、某单位职工24人中,有女性11人,已婚的有16人。在婚的16人中有女性6人。问这个单位的未婚男性有多少人?_____
A: 1B: 3C: 9D: 12
参考答案: B 本题解释:答案:B【解析】男性人数为:24-11=13,已婚男性为l6-6=10(人),因此,未婚男性为13-10=3(人),故选B。