时间:2016-06-23 07:09:39
1、有浓度为4%的盐水若干克,蒸发了一些水分后浓度变成l0%,再加入300克4%的盐水后,变为浓度6.4%的盐水,则最初的盐水是_____
A: 200克B: 300克C: 400克D: 500克
参考答案: D 本题解释: 【解析】D。可以采用带入法,将选项代入题干中,发现只有当最初的盐水是500克的时候才能满足要求,或者利用倒推方法解题。
2、某制衣厂接受一批服装订货任务,按计划天数进行生产,如果每天平均生产20套服装,就比订货任务少生产100套;如果每天生产23套服装,就可超过订货任务20套。那么,这批服装的订货任务是多少套?_____
A: 760B: 1120C: 900D: 850
参考答案: C 本题解释:正确答案是C考点盈亏问题解析解析1:假设订货任务为x套,计划天数为y天,则可得:20y+100=x,23y-20=x,解得x=900,y=40。故正确答案为C。解析2:根据题意订货的套数加上20可以被23整除,观察选项,只有C符合。
3、(2006国家,第49题)某原料供应商对购买其原料的顾客实行如下优惠措施:①-次购买金额不超过1万元,不予优惠; ②-次购买金额超过1万元,但不超过3万元,给九折优惠; ③-次购买金额超过3万元,其中3万元九折优惠,超过3万元部分八折优惠。某厂因库容原因,第-次在该供应商处购买原料付款7800元,第二次购买付款26100元,如果他-次购买同样数量的原料,可以少付多少元?_____
A: 1460元B: 1540元C: 3780元D: 4360元
参考答案: A 本题解释:参考答案:A题目详解:第-次付款7800元,因此第-次购买的原料价值7800元(不打折);第二次付款26100元,因此第二次购买的原料价值 元(打九折);所以两次购买的原料总价值为
元。①
的部分,应付
元;②
元的部分,应付
元。综上,总共少支付
元。考查点:数量关系>数学运算>统筹问题>最优效率分配问题
4、高速公路上行驶的汽车A的速度是每小时100公里,汽车B的速度是每小时120公里,此刻汽车A在汽车B前方80公里处,汽车A中途加油停车10分钟后继续向前行驶。那么从两车相距80公里处开始,汽车B至少要多长时间可以追上汽车A?_____
A: 2小时B: 3小时10分C: 3小时50分D: 4小时10分
参考答案: B 本题解释:正确答案是B考点行程问题解析汽车A在加油的10分钟时间内汽车B可行驶路程120×1/6=20公里,A、B间剩余80-20=60公里是A、B追及的过程,用时60÷(120-100)=3小时,因此汽车B追上A共用时3小时10分钟,故正确答案为B。
5、从一瓶浓度为20%的消毒液中倒出2/5后,加满清水,再倒出2/5,又加满清水,此时消毒液的浓度为:_____
A: 7.2%B: 3.2%C: 5.0%D: 4.8%
参考答案: A
6、足球比赛的记分规则为:胜一场得3分;平一场得1分;负一场得0分。一个队打了14场,负5场,共得19分,那么这个队胜了几场?_____
A: 3B: 4C: 5D: 6
参考答案: C 本题解释:正确答案是C考点鸡兔同笼问题解析由题意:设这个队胜了a场,平了b场,则3a+b=19,a+b=14-5=9,解得a=5,所以这个队胜了5场。
7、小李开了一个多小时会议,会议开始时看了手表,会议结束时又看了手表,发现时针与分针恰好互换了位置。问这次会议大约开了1小时多少分?_____
A: 51B: 47C: 45D: 43
参考答案: A 本题解释:A。时针和分针正好互换了位置,说明两针一共转了720度。因为时针每分钟转过0.5度,分针每分钟转过6度,所以720÷(6+0.5)≈110.7分,约为l小时51分。
8、爷爷的老式时钟的时针与分针每隔66分重合一次。如果早晨8点将时钟对准,到第二天早晨时钟再次指示8点时,实际是几点几分?_____
A: 8点8分B: 8点10分C: 8点12分D: 8点16分
参考答案: C 本题解释:参考答案:C题目详解:对于标准钟表:时针与分针每重合一次需要分;则老式时钟每重合一次比标准时间慢
分;从12点开始的24时。分针转24圈,时针转2圈,分针比时针多转22圈,即22次追上时针;也就是说24时正好重合22次:所以老式时钟的时针与分针共重合了22次;所以比标准时间慢:
分;故实际时间为8点12分。所以,选C。考查点:数量关系>数学运算>特殊情境问题>钟表问题>时钟的校准问题
9、某仪仗队排成方阵,第一次排列若干人,结果多余10人,第二次比第一次每排增加3人结果缺少29人,仪仗队总人数是_____。
A: 400B: 450C: 500D: 600
参考答案: A 本题解释:【答案】A。解析:设第一次每排x人,共Y排,可列方程xy+10=(x+3)×y-29解得y=13,选项中减10后能被13整除的只有400,故选择A。
10、有一只怪钟,每昼夜设计成10小时,每小时100分钟,当这只怪钟显示5点时,实际上是中午12点,当这只怪钟显示8点50分时,实际上是_____。
A: 17点50分B: 18点10分C: 20点04分D: 20点24分
参考答案: D 本题解释:正确答案是D考点钟表问题解析怪钟从5点走到8点50经过了3×100+50=350分钟,又因为怪钟每天为1000分钟,正常钟为1440分钟,设正常钟走过了X分钟,则有350/1000=X/1440,解得X=504,从12点开始经过了504分钟,时间为20时24分。故正确答案为D。
11、(2008安徽,第15题)某企业有甲、乙、丙三个仓库,且都在一条直线上,之间分别相距l千米、3千米,三个仓库里面分别存放货物5吨、4吨、2吨。如果把所有的货物集中到一个仓库,每吨货物每千米运费是90元,请问把货物放在哪个仓库最省钱?_____
A: 甲B: 乙C: 丙D: 甲或乙
参考答案: B 本题解释:参考答案:B题目详解:此题遵循“小往大处靠”原则,先把2吨的货物移动到4吨那,这样就相当于有了6吨货物,然后在把5吨的货物也移动到6吨,综上所述,运到乙仓库最省钱考查点:数量关系>数学运算>统筹问题>货物集中问题
12、甲、乙两人各写一个三位数,发现这两个三位数有两个数字是相同的,并且它们的最大公约数是75,那么这两个三位数的和的最大值是多少?_____
A: 1725B: 1690C: 1545D: 1340
参考答案: A 本题解释:参考答案:A题目详解:由题意可知:75的倍数的最大三位数是:13×75=975;有两个数字相同的另一个75的倍数最大的是:10×75=750;所以,这两个三位数的和的最大值是:975+750=1725。所以,选A。考查点:数量关系>数学运算>计算问题之数的性质>公约数与公倍数问题>两个数的最大公约数和最小公倍数
13、大小猴子共35只,它们一起去采摘水蜜桃。猴王不在的时候,一只大猴子一小时可采15千克,一只小猴子一小时可采摘11千克。猴王在场监督的时候,每只猴子不论大小每小时都可多采摘12千克。有一天,采摘了8小时,其中只有第一小时和最后一小时有猴王在场监督,结果共采摘了4400千克水蜜桃。在这个猴群中,共有小猴子多少只?_____
A: 18B: 20C: 22D: 24
参考答案: B 本题解释:正确答案是B考点鸡兔同笼问题解析解析1:设猴群中小猴有n只,则[(15+12)×(35-n)+(11+12)n]×2+[15×(35-n)+11n]×6=4400,可得n=20。解析2:我们可以先把35只猴子全部看成小猴子,那么这8小时可完成量为11×35×8+12×35×2=3920。然后分析差异,大猴子每小时比小猴子多采15-11=4,可得大猴子的数量为(4400-3920)÷8÷4=15,故小猴子数量为20。所以正确答案为B。标签差异分析
14、现有边长1米的一个木质正方体,已知将其放入水里,将有0.6米浸入水中。如果将其分割成边长0.25米的小正方体,并将所有的小正方体都放入水中,直接和水接触的表面积总量为_____。
A: 3.4平方米B: 9.6平方米C: 13.6平方米D: 16平方米
参考答案: C 本题解释:正确答案是C考点几何问题解析秒杀技对大正方体,易得其浸在水中的面积为3.4平方米,恰为选项A。而分解过小正方体后总浸水面积比为比值的倍数。故正确答案为C。
15、从装满1000克浓度为50%的酒精瓶中倒出200克酒精,再倒入蒸馏水将瓶加满。这样反复三次后,瓶中的酒精浓度是多少?(X)
A: 22.5%B: 24.4%C: 25.6%D: 27.5%
参考答案: 本题解释:正确答案是C考点浓度问题解析解析1:先道出溶液再倒入清水,套用公式,浓度=,所以答案为C。
解析2:由题意:每次操作后,酒精浓度变为原来的(1000-200)÷1000=0.8,故反复三次后浓度变为50%×0.8×0.8×0.8=25.6%。标签公式应用
16、现有甲、乙两个水平相当的技术工人需进行三次技术比赛,规定三局两胜者为胜方。如果在第一次比赛中甲获胜,这时乙最终取胜的可能性有多大?_____。
A: B:
C:
D:
参考答案: B 本题解释:参考答案:B题目详解:令乙最终取胜的事件为,第一次比赛中甲获胜为事件
:则
;
第一次比赛中甲获胜的概率×第二次乙获胜的概率×第三次乙获胜的概率
;
;因此
;所以,选B。考查点:数量关系>数学运算>概率问题>条件概率
17、在一条长100米的道路上安装路灯,路灯的光照直径是10米,请问至少要安装多少盏灯?_____
A: 11 B: 9 C: 12 D: 10
参考答案: D 本题解释:D【解析】最少的情况发生在,路灯的光形成的圆刚好相切。要路灯的光照直径是10米,即灯照的半径为5米,因此第一个路灯是在路的开端5米处,第二个在离开端15米处,第三个在25米处……第十个在95米处,即至少要10盏。
18、已知2008被一些自然数去除,得到的余数都是10,那么,这些自然数共有_____。
A: 10B: 11C: 12D: 9
参考答案: B 本题解释:【答案解析】解析:余10=>说明2008-10=1998都能被这些数整除。同时,1998=2×3×3×3×37,所以,取1个数有37,2,3。---3个。,只取2个数乘积有3×37,2×37,3×3,2×3。---4个。,只取3个数乘积有3×3×37,2×3×37,3×3×3,2×3×3。---4个。只取4个数乘积有3×3×3×37,2×3×3×37,2×3×3×3。---3个。只取5个数乘积有2×3×3×3×37---1个。总共3+4+4+3+1=15,但根据余数小于除数的原理,余数为10,因此所有能除2008且余10的数,都应大于10=>2,3,3×3,2×3被排除。综上,总共有3+4+4+3+1-4=11个。
19、在一个长16米、宽12米、高8米的库房中最多可以装下多少只长4市尺、宽3市尺、高2市尺的箱子?_____
A: 1564B: 1728C: 1686D: 1835
参考答案: B 本题解释:参考答案:B题目详解:根据公式1米=3市尺先进行单位换算,库房的体积为:能放箱子的个数为:
。所以,选B。考查点:数量关系>数学运算>几何问题>立体几何问题>表面积与体积问题
20、(2004上海,第18题)参加会议的人两两都彼此握手,有人统计共握手36次,到会共有多少人?_____
A: 9B: 10C: 11D: 12
参考答案: A 本题解释:参考答案:A题目详解:本题等价于从个人中挑出2个成为一个组合;即:
;解得
;考查点:数量关系>数学运算>排列组合问题>常规排列组合问题
21、如果甲比乙多20%,乙比丙多20%,则甲比丙多百分之多少?_____
A: 44B: 40C: 36D: 20
参考答案: A 本题解释: 【解析】A。甲=丙×(1+20%)×(1+20%)=144%丙,则甲比丙多44%。
22、某单位组织党员参加党史、党风廉政建设,科学发展观和业务能力四项培训,要求每名党员参加且只参加其中的两项。无论如何安排,都有至少5名党员参加的培训完全相同,问该单位至少有多少名党员?_____
A: 17B: 21C: 25D: 29
参考答案: C 本题解释:正确答案是C考点抽屉原理问题解析
23、李明从图书馆借来一批图书,他先给了甲5本和剩下的,然后给了乙4本和剩下
,最后自己还剩2本。李明共借了多少本书?_____
A: 30B: 40C: 50D: 60
参考答案: A 本题解释: 【解析】A。解法一、设李明共借书x本,则,解得x=30;解法二、思维较快的直接倒推用反计算,
。
24、有黑色、白色、黄色的筷子各8双,混杂地放在一起,黑暗中想从这些筷子中取出颜色不同的两双筷子,问至少要取多少根才能保证达到要求?_____
A: 4B: 5C: 11D: 19
参考答案: D 本题解释:参考答案题目详解:解法一:考虑最差的情形。先选出一种颜色所有的筷子,然后再取出剩下的两种颜色的筷子各1根,最后再随便取1根即可。因此,至少要取8×2+1×2+1=19根,才能保证达到要求。解法二:1.最不好的取法是一种取了8双,另2种各取了1根,还不能保证有颜色不同的筷子两双;2.如果再取1根,在剩下的2种中,不管从哪一种取1根,都会和已经取出的凑成颜色相同 www.91eXam.org的一双筷子,所以至少要取
根。考查点:数量关系>数学运算>抽屉原理问题>抽屉原理1
25、用分期付款的形式还贷,贷款1万元,3年还清,每月应还301.914元,那么贷款60万元,3年还清,每期应还_____。
A: 1666.67元B: 1811.484元C: 18666.67元D: 18114.84元
参考答案: D 本题解释:正确答案是D考点经济利润问题解析本题时间和利率均相同,无论复利或单利,贷款60万每月应还的钱数为贷款1万每月应还钱数的60倍,301.914×60,尾数为4,可排除A、C,根据数量级可排除B项,故正确答案为D。
26、一个两位数除以一个一位数,商仍是两位数,余数是8。问:被除数、除数、商以及余数之和是多少?_____
A: 98B: 107C: 114D: 125
参考答案: D 本题解释:【答案】D。解析:猜证结合的98÷10=9余8,10+98+9+8=125。
27、甲、乙沿同一公路相向而行,甲的速度是乙的1.5倍,已知甲上午8点经过邮局,乙上午10点经过邮局。问:甲乙在中途何时相遇?_____
A: 8点48分 B: 8点30分 C: 9点 D: 9点10分
参考答案: A 本题解释:A。【解析】设乙的速度为x,甲就是1.5x,当甲8点到邮局时,乙离邮局还有2个小时的路程(2x),甲乙走完2x路程需要2x/(1.5x+x)=4/5小时=48分钟,加上8点,就是8点48分相遇。
28、小张、小王二人同时从甲地出发,驾车匀速在甲乙两地之间往返行驶。小张的车速比小王快,两人出发后第一次和第二次相遇都在同一地点,问小张的车速是小王的几倍?_____
A: 1.5B: 2C: 2.5D: 3
参考答案: B 本题解释:B【解析】行程问题。采用比例法。由题意,两人从同地出发,则第一次相遇时两人的路程和为2个全程,设其中小张走了x,小王走了y;第二次相遇时两人走了4个全长,小张走了2y,小王走了x-y;由比例法x/y=2y/(x-y),解得x=2y,故两人的速度比为2:1。
29、已知两个四位数的差为7930,问这两个四位数的和最大值为多少?_____
A: 12068B: 12560C: 13268D: 13650
参考答案: A 本题解释: 【答案】A。要使两数的和尽量的大,则应使这两个数尽量大,取较大的数为9999,则较小的为9999-7930=2069,它们的和等于9999+2069=12068,选A。
30、将三盆同样的红花和四盆同样的黄花摆放成一排,要求三盆红花互不相邻,共有多少种不同的方法?_____
A: 8B: 10C: 15D: 20
参考答案: B 本题解释:B。【解析】四盆黄花两侧可形成5个空隙,要使三盆红花互不相邻只需从中选取3个空隙放入红花即可,=10。
31、某日小李发现日历有好几天没有翻,就一次翻了6张,这6天的日期加起来的数字和是141,他翻的第一页是几号?_____
A: 18 B: 21 C: 23 D: 24
参考答案: B 本题解释: 【解析】B。设第一张的日期为X,则可得方程X+X+1+X+2+X+3+X+4+X+5=141,解得X=21,所以选答案B。
32、两个相同的瓶子装满酒精溶液,一个瓶子中酒精与水的体积比是3:1,另一个瓶子中酒精与水的体积比是4:1,若把两瓶酒精溶液混合,则混合后的酒精和水的体积之比是多少?_____
A: 31:9B: 7:2C: 31:40D: 20:11
参考答案: A 本题解释:【答案】A。解析:设两个瓶子每个容量为20,第一个瓶子中酒精和水分别为15和5;另一个瓶子中酒精和水分别为16和4,混合后酒精和水体积比为(15+16):(5+4)=31:9,故正确答案为A。
33、100个孩子按1、2、3…依次报数,从报奇数的人中选取A个孩子,他们所报数字之和为1949。问A最大值为多少?_____
A: 43B: 44C: 45D: 46
参考答案: A 本题解释:参考答案:A题目详解:依题意:数字之和为1949,而1949是奇数;根据“奇数个奇数相加,和是奇数”:A必是奇数,去掉B、D选项;其次,100以内的50个奇数之和为2500,而在100内最大的5个奇数是:99,97,95,93,91,它们的和是475;可以推出:;而
,C选项也不满足条件。所以,选A。考查点:数量关系>数学运算>计算问题之数的性质>奇偶性与质合性问题>奇偶性
34、某铁路线上有25个大小车站,那么应该为这条路线准备多少种不同的车票?_____
A: 500B: 600C: 400D: 450
参考答案: B 本题解释:【解析】B。25×24=600
35、77个连续自然数的和是7546,则其中第45个自然数是_____。
A: 91B: 100C: 104D: 105
参考答案: C 本题解释:77个自然数的和是7546,故平均数7546÷77=98为中位数,也即第39个数,因此第45个数为104。故选C。
36、甲、乙两船在相距90千米的河上航行,如果相向而行,3小时相遇,如果同向而行则15小时甲船追上乙船。求在静水中甲、乙两船的速度_____千米/小时。
A: 18,12B: 12,18C: 16,14D: 21,9
参考答案: A 本题解释:参考答案:.A题目详解:两船速度和:90/3=30千米/时两船速度差:90/15=6千米/时甲船30+6)/2=18千米/时乙船:30-18=12千米/时考查点:数量关系>数学运算>行程问题>行船问题>基本行船问题
37、一条环形赛道前半段为上坡,后段为下坡,上坡和下坡的长度相等,两辆车同时从赛道起点出发同向行驶,其中A车上、下坡时速相等,而B车上坡时速比A车慢20%,下坡时速比A车快20%,问A车跑到第几圈时两车再次齐头并进?_____
A: 23B: 22C: 24D: 25
参考答案: D 本题解释:正确答案是D考点行程问题解析设A车速度为v,则B车上坡速度为0.8v,B车下坡速度为1.2v。上坡和小坡距离相等,套用等距离平均速度公式可知B车完成一圈的平均速度为(2×0.8v×1.2v)/(0.8v+1.2v)=0.96v。则A车与B车的速度之比为v:0.96v=25:24。也就是说当A车行驶25圈时,B车行驶24圈,此时A、B再次齐头并进,故正确答案为D。标签等距离平均速度模型
38、(2007浙江,第11题)的值的个位数是_____。
A: 5B: 6C: 8D: 9
参考答案: A 本题解释:参考答案:A题目详解:应用首尾数法:所以,选A。考查点:数量关系>数学运算>计算问题之算式计算>速算与技巧>首尾数法
39、今年为2013年,女儿年龄是母亲年龄的1/4,40年后女儿的年龄是母亲年龄的2/3。问当女儿年龄是母亲年龄的1/2时是公元多少年?_____
A: 2021B: 2022C: 2026D: 2029
参考答案: D 本题解释:正确答案是D考点年龄问题解析设女儿今年为m岁,则母亲为4m岁。则可得m+40=(4m+40)×2/3,解得m=8,4m=32;设n年后女儿年龄是母亲的1/2,则有(8+n)=(32+n)×1/2,解得n=16,而今年为2013年,则可得满足条件的那一年为2013+16=2029年。故正确答案为D。
40、某小学六年级的同学要从10名候选人中投票选举三好学生,规定每位同学必须从这10个人中任选两名,那么至少有_____人参加投票,才能保证必有不少于5个同学投了相同两个候选人的票。
A: 256B: 241C: 209D: 181
参考答案: D 本题解释:【解析】从10人中选2人,共有45种不同的选法。要保证至少有5个同学投了相同两个候选人的票,由抽屉原理知,至少要45×4+1=181人。
41、甲、乙、丙三人买水果,甲买了3千克苹果和2千克梨,乙买了4千克苹果和3千克梨,丙买了3千克苹果和4千克梨。乙比甲多花7元,甲比丙少花5元。问甲、乙、丙共花了多少钱?_____。
A: 92.5元B: 112.5元C: 88.0元D: 67.5元
参考答案: D
42、电影票10元一张,降价后观众增加一倍,收入增加1/5,则一张票降价多少元?_____
A: 8B: 6C: 4D: 2
参考答案: C 本题解释:答案:C。代入法。10元一张票,一个人去看,总收入10元,降价了以后, 观众增加了1倍,2个人去看,收入增加了1/5,也就是说,两个人看收入为12元,每张票价就是6元钱,相比原来的10元钱一张,下降了4元,所以答案是C
43、甲家庭和乙家庭共有图书3245册,甲家庭的图书数量是乙家庭的4倍,甲家庭和乙家庭各有图书多少册?_____
A: 2596,649B: 2425,820C: 2620,625D: 2530,715
参考答案: A 本题解释:正确答案是A考点倍数约数问题解析设乙家庭有A本图书,则甲家庭有4A本图书,则乙家庭的图书数量为3245÷5=649,故正确答案为A选项。秒杀技因为甲家庭的图书数量被4整除,B、D选项中甲家庭的图书数量不能被4整除,故排除B、D。再直接代入A选项649×4=2596,2596+649=3245,故正确答案为A选项。标签直接代入数字特性
44、五个人平均身高是169.4厘米,从矮到高排成一列,前三个人平均身高是166厘米,后三个人平均身高是172厘米,中间那个人身高是多少厘米?_____
A: 167B: 168C: 169D: 170
参考答案: A 本题解释:参考答案:A题目详解:中间那个人身高为:中间那个人的身高=前三个人的总身高+后三个人的总身高-个人的身高;即
厘米;所以,选A。考查点:数量关系>数学运算>计算问题之算式计算>平均值问题>算术平均值
45、(2008河南招警,第48题)今年小方父亲的年龄是小方的3倍,去年小方的父亲比小方大26岁。那么小方明年多大?_____
A: 16B: 13C: 15D: 14
参考答案: D 本题解释:参考答案题目详解:解法一:假设小方和他父亲今年分别为
、
岁,则:
,解得,
,因此小方明年14岁。所以,选D。解法二:这是一道年龄问题。题目中多处牵涉细节。去年小方父亲比小方大26岁,那么今年还是大26岁;今年小方父亲的年龄是小方的3倍,那么年龄差就是小方年龄的2倍,可以推出小方今年的年龄是:26÷2=13(岁)。注意题目问的是“明年小方的年龄”,所以结果还要再加1,即小方明年14岁。所以,选D。考查点:数量关系>数学运算>特殊情境问题>年龄问题
46、妈妈给了红红一些钱去买贺年卡,有甲、乙、丙三种贺年卡,甲种卡每张0.50元,丙种卡每张1.20元。用这些钱买甲种卡要比买乙种卡多买8张,买乙种卡要比买丙种卡多买6张。妈妈给了红红多少钱?_____
A: 8元B: 10元C: 12元D: 15元
参考答案: C 本题解释:C解析:盈亏总额为0.5×8+1.2×6=11.2(元),单价相差1.2-0.5=0.7(元),所以共可买乙种卡11.2÷0.7=16(张)。妈妈给了红红0.5×(16+8)=12(元)。故本题正确答案为C。
47、从1、2、3、4中任取3个数组成没有重复的三位数的偶数的取法种数为_____。
A: 10 B: 12 C: 13 D: 11
参考答案: B 本题解释:【解析】B。 题干要求组成没有重复数字的三位数的偶数,所以只有尾数是2或4两种情况。当尾数是2时,有2×3=6(种);当尾数是4时,有2×3=6(种),所以共有6+6=12(种),故本题答案为B。
48、的值是_____
A: B:
C:
D:
参考答案: C 本题解释:参考答案:C题目详解:本题可以拆项化简,选择C。考查点:数量关系>数学运算>计算问题之算式计算>数列问题>数列求和>单一数列求和>分式数列求和
49、电影票原价若干元,现在每张降价3元出售,观众增加一半,收入也增加1/5,一张电影票原来为多少元?_____
A: 4.5B: 7.5C: 12D: 15
参考答案: D 本题解释:正确答案是D考点经济利润问题解析根据题意,设原来每张电影票m元,观众n人,则有m×n×(1+1/5)=(m-3)×n×(1+1/2),解之得m=15。故正确答案为D。
50、某市居民生活用电每月标准用电量的基本价格为每度0.60元,若每日用电量超过标准用电量,超出部分按基本价格的80%收费,某户九月份用电100度,共交电费57.6元,则该市每月标准用电量为_____。
A: 60度B: 70度C: 80度D: 90度
参考答案: C 本题解释:正确答案是C考点鸡兔同笼问题解析解析1:假定100度电全部是标准用电量范围内,则应交电费60元,实际交电费57.6元,少交2.4元。注意到每超过标准用电量1度电,少交费0.12元,因此超过标准用电量的部分为2.4÷0.12=20(度),因此标准用电量为80度。故正确答案为C。解析2:设每月标准电量为y度,超出标准的电量为(100-y)度,则由题意标准电量所产生的电费为0.6y,而超出标准电量部分的电量单价为0.6×0.8=0.48元/度,因此所产生的电费为0.48×(100-y),所以0.6y+0.48×(100-y)=57.6,解得y=80,故正确答案为C。
51、某服装店老板去采购一批商品,其所带的钱如果只买某种进口上衣可买120件,如果只买某种普通上衣则可买180件。现在知道,最后该老板买的进口上衣和普通上衣的数量相同,问他最多可以各买多少件?_____
A: 70B: 72C: 74D: 75
参考答案: B 本题解释:
52、已知,且
,那么k的值为:_____
A: 4B: C: 一4D:
参考答案: A 本题解释:参考答案:A题目详解:由,得:
;则:
,那么
。所以,选A。考查点:数量关系>数学运算>计算问题之算式计算>算式等式问题
53、某旅游景点商场销售可乐,每买3瓶可凭空瓶获赠1瓶可口可乐,某旅游团购买19瓶,结果每人都喝到了一瓶可乐,该旅游团有多少人?_____
A: 19B: 24C: 27D: 28
参考答案: D 本题解释:正确答案是D考点计数模型问题解析由题意知:3瓶=1瓶+1水,那么有2瓶=1水,那么该旅游团最多有19+|19/2|=28人。
54、某社区组织开展知识竞赛,有5个家庭成功晋级决赛的抢答环节,抢答环节共5道题。计分方式如下:每个家庭有10分为基础分:若抢答到题目,答对一题得5分,答错一题扣2分;抢答不到题目不得分。那么,一个家庭在抢答环节有可能获得_____种不同的分数。
A: 18B: 21C: 25D: 36
参考答案: B 本题解释:正确答案是B考点排列组合问题解析抢到0题,得分情况:对0题;抢到1题,得分情况:对0题、对1题;抢到2题,等分情况:对0题、对1题、对2题;同理可推知,抢到n题,得分情况有n+1种,而共有5题,所以总得分情况为1+2+3+4+5+6=21种。故正确答案为B。
55、商店里有六箱货物,分别重15、16、18、19、20、31千克,两个顾客买走了其中五箱。已知一个顾客买的货物重量是另一个顾客的2倍。商店剩下的一箱货物重多少千克?_____。
A: 16 B: 18C: 19 D: 20
参考答案: D 本题解释:D 【解析】根据题意知道,货物的总重量是3个倍数,则它们的数字之和必定能被3整除,经过计算转换得知,剩下的那一箱重20千克。故选D。
56、1至1000中所有不能被5、6、8整除的自然数有多少个?_____
A: 491B: 107C: 400D: 600
参考答案: D 本题解释: D【解析】 只要求出1~1000内5的倍数、6的倍数或8的倍数或5×6,5×8,24,120的倍数,再根据容斥原理就可求得5的倍数有5、10……1000共200个6的倍数有6、12……996共166个8的倍数有8、16……共125个24的倍数有24、48……984共41个30的倍数有30、60……990共33个40的倍数有40、80……1000共25个120的倍数有120、240……960共8个根据容斥原理可知,5或6或8的倍数有(200+166+125)-(33+25+41)+8=400(个)不能被5或6或8中任一个整除的有1000-400=600(个)故本题选D。
57、用数字0、1、2(即可全用也可不全用)组成的非零自然数,按从小到大排列,问”1010”排在第几个?_____
A: 30B: 31C: 32D: 33
参考答案: A 本题解释:正确答案是A考点排列组合问题解析本题实际求由0、1、2构成的数字中,小于1010的有多少个。显然组成的非零一位数有2个;两位数有2×3=6个;三位数有2×3×3=18个;四位数中比1010小的为1000、1001、1002共计3个。则1010排在2+6+18+3+1=30位,故正确答案为A。
58、把一个正四面体的每个表面都分成9个相同的等边三角形,用任意颜色给这些小三角形上色,要求有公共边的小三角形颜色不同,问最多有多少个小三角形颜色相同?_____
A: 15B: 12C: 16D: 18
参考答案: A 本题解释:正确答案是A考点几何问题解析先看一个面上的情况,要是颜色相同的三角形最多,最多有6个(如下图左侧图所示),此时其他面上能与之颜色相同的三角形最多只能有3个(如下图右侧图所示)。因此颜色相同的三角形最多有6+3×3=15个,正确答案为A。标签画图分析
59、某区要从10位候选人中投票选举人大代表,现规定每位选举人必须从这10位中任选两位投票,问至少要有多少位选举人参加投票,才能保证有不少于10位选举人投了相同两位候选人的票?_____
A: 382位B: 406位C: 451位D: 516位
参考答案: B 本题解释:【答案】B。解析:从10位候选人中选2人共有种票,则每种票有9张相同时需要×9=405个
60、机床厂有四个车间,其中第二车间的职工数比第一车间人数的2/3多48人,而比第三车间人数的5/4倍少15人,且已知第一车间的人数比第三车间人数多14人,又知第四车间人数占全厂总人数的2/5。机床厂总共有多少人?_____
A: 620B: 670C: 590D: 710
参考答案: B 本题解释:正确答案是B考点和差倍比问题解析
61、_____
A: 195200B: 196000C: 210240D: 198000
参考答案: C 本题解释:参考答案:C题目详解:原式=6802-4642-256×144=(680-464)×(680+464)-256×144(平方差公式)=216×1144-256×144=216×(1000+144)-256×144(分配律)=216×1000+216×144-256×144=216000+144×(216-256)=216000-144×40=216000-5760=210240考查点:数量关系>数学运算>计算问题之算式计算>算式等式问题
62、把一个长18米,宽6米,高4米的大教室,用厚度为25厘米的隔墙分为3个活动室(隔墙砌到顶),每间活动室的门窗面积都是15平方米,现在用石灰粉刷3个活动室的内墙壁和天花板,平均每平方米用石灰0.2千克,那么,一共需要石灰多少千克_____。
A: 68.8B: 74.2C: 83.7D: 59.6
参考答案: A 本题解释:正确答案是A考点几何问题解析
63、某单位有18名男员工和14名女员工,分为3个科室,每个科室至少有5名男员工和2名女员工,且女员工的人数都不多于男员工,问一个科室最多可以有多少名员工?_____
A: 14B: 16C: 18D: 20
参考答案: B 本题解释:正确答案是B,全站数据:本题共被作答1次,正确率为0.00%,易错项为C解析想让”其中一个科室员工尽量多”,即需要该科室的男员工和女员工都尽量多,而由于”女员工的人数都不多于男员工”,所以只要让该科室的男员工尽量多,女员工相应配合即可。依题意,为了让其余两个科室男员工人数尽量少,所以只给他们最低限额5名,则最后一个科室可以有男员工18-5-5=8名,相应的女员工也为8名,此时员工数最大,即16名。故正确答案为B。速解本题的关键是找到突破口”男员工数量决定员工数量”考点计数模型问题笔记编辑笔记
64、减数、被减数与差三者之和除以被减数,商是多少_____
A: 0B: 1C: 2D: 减数与差之和
参考答案: C 本题解释: 【解析】C。减数+被减数+差=2被减数,所以商为2。
65、有黑、白、黄色袜子各10只,不用眼睛看,任意地取出袜子来,使得至少有两双袜子不同色,那么至少要取出_____只袜子。
A: 12 B: 13C: 11 D: 14
参考答案: B 本题解释:B 【解析】考虑最坏的情形,把某一种颜色的袜子全部先取出,然后,在剩下两色袜子中各取出一只,这时再任意取一只都必将有两双袜子不同色,即10+2+l=13(只)。故选B。
66、某技校安排本届所有毕业生分别去甲、乙、丙3个不同的工厂实习。去甲厂实习的毕业生占毕业生总数的32%,去乙厂实习的毕业生比甲厂少6人,且占毕业生总数的24%.问去丙厂实习的人数比去甲厂实习的人数_____。
A: 少9人B: 多9人C: 少6人D: 多6人
参考答案: B 本题解释:【答案】B。解析:根据题意去甲厂实习的人数占32%,去乙厂实习的人数占24%,因此去丙厂实习的人数占1-32%-24%=44%,故去丙厂的人数比去甲厂多44%-32%=12%;而去甲厂实习的人数比去乙厂的多32%-24%=8%,为6人,故去丙厂的人数比去甲厂的应多6÷8%×12%=9人,故答案选B。
67、有100人参加运动会的三个比赛项目,每人至少参加一项,其中未参加跳远的有50人,未参加跳高的有60人,未参加赛跑的有70人。问至少有多少人参加了不止一个项目?_____
A: 7B: 10C: 15D: 20
参考答案: B 本题解释:B【解析】最值问题。由题意,参加跳远的人数为50人,参加跳高的为40人,参加赛跑的为30人;即参加项目的人次为120人次;故欲使参加不止一项的人数最少,则需要使只参加一项的人数最多为x,参加3项的人数为y;故x+3y=120,x+y=100,解得y=10。
68、某单位招待所有若干间房间,现要安排一支考察队的队员住宿,若每问住3人,则有2人无房可住;若每问住4人,则有一间房间不空也不满,则该招待所的房间最多有_____。
A: 5间B: 4间C: 6间D: 7间
参考答案: A 本题解释:A。
69、(2008内蒙古,第10题)31个小运动员在参加完比赛后,口渴难耐,去小店买饮料,饮料店搞促销,凭三个空瓶子可以再换一瓶,他们最少买多少瓶饮料才能保证一人一瓶?_____
A: 2lB: 23C: 25D: 27
参考答案: A 本题解释:参考答案:A题目详解:3瓶=1瓶饮料→3瓶=1瓶+1饮料→2瓶=l饮料→N瓶= 饮料→N瓶饮料=N瓶+N饮料=
饮料+N饮料=
饮料。可知
,解得
。考查点:数量关系>数学运算>统筹问题>空瓶换酒问题
70、如果甲比乙多20%,乙比丙多20%,则甲比丙多百分之多少?_____
A: 44B: 40C: 36D: 20
参考答案: C 本题解释:答案:C【解析】这道题实际只要考虑五个五个一数最后剩一个,三个三个一数最后剩一个,即可。这两个最好思考。只有501与421一幕了然,除以5余1。而501能被3整除,只有42。
71、甲、乙、丙三人沿着400米环形跑道进行800米跑比赛,当甲跑1圈时,乙比甲多跑17圈,丙比甲少跑17圈。如果他们各自跑步的速度始终不变,那么,当乙到达终点时,甲在丙前面_____。
A: 85米 B: 90米C: 100米 D: 105米
参考答案: C 本题解释:【解析】C。甲跑 1 圈,乙比甲多跑 17 圈,即 87 圈,丙比甲少跑 17 圈,即 67 圈,则甲、乙、丙三人速度之比为 7 ∶ 8 ∶ 6 。所以,当乙跑完 800 米 时,甲跑了 700 米 ,丙跑了 600 米 ,甲比丙多跑了 100 米 。
72、有浓度为4%的盐水若干克,蒸发了一些水分后浓度变成10%,再加入300克4%的盐水后,变为浓度6.4%的盐水,则最初的盐水是_____。
A: 200克B: 300克C: 400克D: 500克
参考答案: D 本题解释:正确答案是D考点浓度问题解析故正确答案为D。
73、某公司的6名员工一起去用餐,他们各自购买了三种不同食品中的一种,且每人只购买了一份。已知盖饭15元一份,水饺7元一份,面条9元一份,他们一共花费了60元。问他们中最多有几人买了水饺?_____
A: 1B: 2C: 3D: 4
参考答案: C 本题解释:正确答案是C考点不定方程问题解析假定购买三种食物人数分别为X、Y、Z,根据题意X+Y+Z=6,15X+7Y+9Z=60。要使得水饺最多,则其他尽可能少。根据奇偶性质,可知X、Y、Z三个数中必然两个为奇数一个为偶数,或者三个均为偶数。将选项代入验证,若Y=4,此时X、Z无正整数解;若Y=3,可知X=2,Z=1,符合题意。因此正确答案为C。秒杀技得到15X+7Y+9Z=60后,注意到15、9、60均能被3整除,因此7Y必然能被3整除,仅C符合。
74、甲乙二人协商共同投资,甲从乙处取了15000元,并以两人名义进行了25000元的投资,但由于决策失误,只收回10000元。甲由于过失在己,愿意主动承担2/3的损失。问收回的投资中,乙将分得多少钱?_____
A: 10000元B: 9000元C: 6000元D: 5000元
参考答案: A 本题解释:正确答案是A考点经济利润问题解析共损失了25000-10000=15000元,甲承担15000×2/3=10000元,乙承担剩余的5000元损失,因此乙应该收回:他的投资-他承担的损失=15000-5000=10000元,故正确答案为A。
75、一个自然数,它的各个数位上的数字和为60,那么这个自然数最小是多少?_____
A: 9879899B: 7899999C: 6799999D: 6999999
参考答案: D 本题解释:参考答案题目详解:一个自然数的值要最小:首先要求它的数位最少;其次要求其高位的数值尽量小;由于各数位上的和固定为6:要想数位最少,各位数上就要尽可能多地出现9:而
.数字进行拆分后排列得到:满足条件的最小自然数为6999999。所以,选D。考查点:数量关系>数学运算>计算问题之数的性质>数字问题>数字的拆分
76、市A公路收费站,去年的收费额比今年的收费额少1/5,估计明年收费额比今年的收费额多1/6,那么明年的收费额估计要比去年的收费额多几分之几?_____
A: 11/24B: 11/25C: 11/30D: 11/60
参考答案: A 本题解释:A。设今年30,则去年是24,明年是35,则明年比去年多了(35-24)/24=11/24,选A。
77、同时打开游泳池的A,B两个进水管,加满水需1小时30分钟,且A管比B管多进水180立方米,若单独打开A管,加满水需2小时40分钟,则B管每分钟进水多少立方米?_____
A: 6B: 7C: 8D: 9
参考答案: B 本题解释:正确答案是B考点工程问题解析解析1:设B管每分钟进水x立方米,则A管每分钟进水为x+2立方米,根据题意可得(2x+2)×90=(x+2)×160,解得x=7。故正确答案为B。解析2:由A、B两管合作加水90分钟,加满水池且A管比B管多进水180立方米,首先可知A管比B管每分钟多进水2立方米,其次可知若A管自己单独灌水90×2=180(分钟),则也可灌满水池,且多灌180立方米(此处原理即用A代替B工作,看差异情况),而题中又告知A管单独工作只需160分钟即可灌满水,因此可知多灌的180立方米用时为180-160=20(分钟),因此A管的效率为每分钟9立方米,于是可知B管每分钟进水7立方米。故正确答案为B。标签差异分析
78、地球表面的陆地面积和海洋面积之比是29︰71,其中陆地的四分之三在北半球,那么南、北半球海洋面积之比是_____
A: 284︰29B: 113︰55C: 371︰313D: 171︰113
参考答案: D 本题解释: 【解析】D。根据题干中的比例关系,可以推断出南、北半球的海洋面积之比为:
79、某单位职工24人中,有女性11人,已婚的有16人。在婚的16人中有女性6人。问这个单位的未婚男性有多少人?_____
A: 1B: 3C: 9D: 12
参考答案: B 本题解释:答案:B【解析】男性人数为:24-11=13,已婚男性为l6-6=10(人),因此,未婚男性为13-10=3(人),故选B。
80、一名外国游客到北京旅游,他要么上午出去游玩,下午在旅馆休息,要么上午休息,下午出去游玩,而下雨天他只能一天都待在屋里。期间,不下雨的天数是12天,他上午待在旅馆的天数为8天,下午待在旅馆的天数为12天,他在北京共待了多少天?_____
A: 16天B: 20天C: 22天D: 24天
参考答案: A 本题解释:正确答案是A考点容斥原理问题解析解析1:设这个人在北京共待了n天,其中12天不下雨,那么n-12天下雨。由两集合容斥原理公式得:上午待在旅馆的天数+下午待在旅馆的天数-上下午都待在旅馆的天数(就是下雨的天数)=总天数-上下午都不待在旅馆的天数(根据题意不存在这样的一天)。即:8+12-(n-12)=n-0,解得n=16。故正确答案为A。解析2:设游客在京期间下雨天数为x。因为他上午待在旅馆的8天中包括两部分:因下雨无法出去的天数(x)和因下午出去游玩而休息的天数(8-x);同理,下午待在旅馆的12天中包括两个部分:因下雨无法出去的天数(x)和因上午出去游玩而休息的天数(12-x)。由题意可得:(8-x)+(12-x)=12,解得x=4,所以一共在北京待了16天。故正确答案为A。
81、(2008广东,第11题)某人工作-年的报酬是18000元和-台洗衣机,他干了7个月不干了,得到9500元和-台洗衣机,这台洗衣机价值多少钱?_____
A: 8500B: 2400C: 2000D: 1500
参考答案: B 本题解释:参考答案:B题目详解:根据题意,假设这个人一个月的报酬为元,洗衣机价值为
元,则:
所以,选B。考查点:数量关系>数学运算>利润利率问题>其他利润相关问题
82、
A: 2.75B: 3.25C: 2D: 3
参考答案: 本题解释:参考答案:C题目详解:由两点之间线段最短可知:连接AB,交公路L于点E,E点就是A、B两个村庄到此处处理垃圾都比较方便的地方。设CE距离为x:根据tanA=a/b可得:tanA=x/1=x,tanB=(6-x)/2=3-x/2;由于∠A=∠B:故x=3-x/2,解得,x=2。即应建在离C处2公里。所以,选C。考查点:数量关系>数学运算>几何问题>平面几何问题>与线、角相关问题(平面)
83、小王登山,上山的速度是4km,到达山顶后原路返回,速度为6km/h,设山路长为9km,小王的平均速度为_____km/h。
A: 5B: 4.8C: 4.6D: 4.4
参考答案: B 本题解释:正确答案是B考点平均数问题解析根据等距离平均速度模型公式可得平均速度为2×6×4÷(4+6)=4.8千米/小时。故正确答案为B。注:距离为无关项。
84、一口水井,在不渗水的情况下,甲抽水机用4小时可将水抽完,乙抽水机用6小时可将水抽完。现用甲、乙两台抽水机同时抽水,但由于渗水,结果用了3小时才将水抽完。问在渗水的情况下,用乙抽水机单独抽,需几小时抽完?_____
A: 12小时B: 13小时C: 14小时D: 15小时
参考答案: A 本题解释:正确答案是A考点工程问题解析
85、在我国民间常用十二生肖进行纪年,十二生肖的排列顺序是鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪。2011年是兔年,那么2050年是_____。
A: 虎年B: 龙年C: 马年D: 狗年
参考答案: C 本题解释:正确答案是C考点周期问题解析(2050-2011)÷12=3······3,所以是兔年之后的第三个生肖,即马年。故正确答案为C。
86、某班学生不到50人,在一次考试中,有1/7人得优,1/3人得良,1/2人及格,其余的均不及格,那么不及格的人数是_____。
A: 1B: 2C: 3D: 4
参考答案: A 本题解释:正确答案是A考点倍数约数问题解析通过题干可知,该班级人数应为7、3、2的公倍数,又因为不能超过50人,所以该班人数为7×3×2=42人。那么不及格的人数为42-6-14-21=1。故正确答案为A。标签数字特性
87、某单位有78个人,站成一排,从左向右数,小王是第50个,从右向左数,小张是第48个,则小王小张之间有多少人?_____
A: 16B: 17C: 18D: 20
参考答案: C 本题解释:正确答案是C考点容斥原理问题解析解析1:因为从左向右数,小王是第50个,所以小王左边有49人,从右向左数,小张是第48个,所以小张左边有78-48=30人,所以两人之间有49-30-1=18人。故正确答案为C。解析2:
88、
89、计算1/4+3/8+7/16+15/32+31/64+63/128+127/256+255/512+511/1024=?_____
A: 3×(513/1024)B: 3×(1023/1024)C: 4×(1/1024)D: 4×(511/1024)
参考答案: C 本题解释:【答案】C 解析∶原式=1/2-1/4+1/2-1-8+……+1/2-1/1024=4+1/1024=4×(1/1024)。
90、小明用5天时间看完了一本200页的故事书。已知第二天看的页数比第一天多,第三天看的页数是第一、二两天看的页数之和,第四天看的页数是第二、三两天看的页数之和,第五天看的页数是第三、四两天看的页数之和。那么小明第五天至少看了_____页。
A: 84B: 78C: 88D: 94
参考答案: A 本题解释:【答案】A。解析:设小明第一天看了a页,第二天看了b页,则前五天看的页数依次为a,b,a+b,a+2b,2a+3b。这些数的和是200,可得5a+7b=200。因为5a与200都是5的倍数,所以b是5的倍数。因为ba,所以上式只有两组解b=20,a=12;b=25,a=5。将这两组解分别代入2a+3b,得到第五天至少看了84页。
91、一圈金属线长30米,截取长度为A的金属线3根,长度为B的金属线5根,剩下的金属线如果再截取2根长度为B的金属线还差0.4米,如果再截取2根长度为A的金属线则还差2米.A等于几米?_____
A: 3.6B: 2.8C: 6.4D: 9.2
参考答案: A 本题解释:参考答案:A题目详解:列方程:所以,选A。考查点:数量关系>数学运算>盈亏问题
92、甲、乙两辆清洁车执行东、西城间的公路清扫任务。甲车单独清扫需要6小时,乙车单独清扫需要9小时,两车同时从东、西城相向开出,相遇时甲车比乙车多清扫15千米。问东、西两城相距多少千米?_____
A: 60千米B: 75千米C: 90千米D: 135千米
参考答案: B 本题解释:正确答案是B考点工程问题解析甲乙的速度比为3:2,设全程为5份,则甲乙相遇时甲清扫了3份,乙清扫了2份,甲比乙多1份,而1份对应15千米,因此东西两城相距5×15=75千米。标签赋值思想比例转化
93、在某状态下,将28克某种溶质放入99克水中,恰好配成饱和溶液。从中取出1/4溶液,加入4克溶质和11克水,请问此时浓度变为多少?_____
A: 21.61%B: 22.05%C: 23.53%D: 24.15%
参考答案: B 本题解释:正确答案是B考点浓度问题解析本题需要注意判断溶液的浓度,首先要判断溶液是否饱和。由于99克水最多可以溶解28克溶质,则11克水最多可以溶解28/9克溶质,即小于4克溶质,因此饱和溶液加入4克溶质和11克水仍为饱和溶液,故饱和溶液浓度为:28/(28+99)×100%≈22.05%,故正确答案为B。
94、下图中的甲和乙都是正方形,BE=6厘米,EF=4厘米。那么,阴影部分ABC的面积是多少平方厘米?_____
A: 20B: 24C: 21D: 18
参考答案: D 本题解释:正确答案是D考点几何问题解析
95、某地劳动部门租用甲、乙两个教室开展农村实用人才培训。两教室均有5排座位,甲教室每排可坐10人,乙教室每排可坐9人。两教室当月共举办该培训27次,每次培训均座无虚席,当月培训1290人次。问甲教室当月共举办了多少次这项培训?_____
A: 8B: 10C: 12D: 15
参考答案: D 本题解释:正确答案是D考点和差倍比问题解析乙教室可坐9人,可知乙培训过的人数含有因子3,而总的培训人数1290也含有因子3,因此甲教室培训过的人数也必然含有3因子。而甲教室可坐50人,因此要使甲教室培训过的人数也含有3因子,则其举办次数必然含有3因子,因此只有C、D符合。将C选项代入,可知此时乙教室举办过15次培训,其总人数的尾数为5,而甲教室培训的总人数尾数总是为0,因此甲、乙教室的培训人数尾数为5,不符合要求。故正确答案为D。秒杀技由题意,甲教室每次培训50人,乙教室每次培训45,假设甲乙的次数分别为X、Y,则可得50X+45Y=1290,观察等式可知45Y的尾数必然为0,因此Y必然为偶数,从而X为奇数,仅D符合。故正确答案为D。
96、半径为5厘米的三个圆弧围成如右图所示的区域,其中弧与
弧为四分之一圆弧,而
弧是一个半圆弧,则此区域的面积是多少平方厘米?_____
A: 25B: C.50D:
参考答案: C 本题解释:参考答案:C题目详解:根据图形:过B,D点分别做垂线;过A点做BD的平行线,连接各点;为一长方形;等于所求图形面积;长方形面积等于:;所以,选C。考查点:数量关系>数学运算>几何问题>平面几何问题>周长与面积相关问题
97、小蔡去超市购物,她买了1.6千克苹果、4磅食油和3.8斤芦柑。请问小蔡买的这三种食品最重的是哪一中?_____
A: 苹果B: 食油C: 芦柑D: 三者一样重
参考答案: C 本题解释:参考答案:C题目详解:同时考查运算和单位换算:。换算可以得到:小蔡买了约1.814千克食油和1.9千克芦柑;比较1.6、1.814、1.9大小:即可判断出三种食品中芦柑最重;所以,选C。考查点:数量关系>数学运算>计算问题之算式计算>比较大小问题
98、一条鱼头长9英寸,尾长为头长加半个身长,身长为头长加尾长,鱼全长共_____英寸。
A: 54B: 63C: 72D: 81
参考答案: C 本题解释:正确答案是C考点计算问题解析设鱼的身长为x,尾长为y,则y=9+x÷2,x=9+y,可得x=36,y=27,故鱼长为36+27+9=72英寸。故正确答案为C。
99、参加阅兵式的官兵排成一个方阵,最外层的人数是80人,问这个方阵共有官兵多少人_____
A: 441B: 400C: 361D: 386
参考答案: A 本题解释:正确答案是A考点计算问题解析解析1:设每一排官兵人数为x,x×4-4=80,x=21,则每排官兵人数为21人,那么方阵人数为21×21=441。故正确答案为A。解析2:方正最外层是80人,外层一共4边,但每个顶点上的士兵多计算了一次,得出每一边的人(80+4)÷4=21.方正就是21×21=441。故正确答案为A。
100、某单位向希望工程捐款,其中部门领导每人捐50元,普通员工每人捐20元,某部门所有人员共捐款320元。已知该部门部门总人数超过10人,问该部分可能有几名部门领导?_____
A: 1B: 2C: 3D: 4
参考答案: B 本题解释:正确答案是B考点不定方程问题解析假定该部门领导、普通员工分别为X、Y,根据题意可得,50X+20Y=320,X+Y>10。改写上述方程为5X+2Y=32,可知X必为偶数,排除A、C;将其余选项代入验证,若X=2,则Y=11,X+Y=13>10,符合要求;若X=4,则Y=6,X+Y=10,不符合要求。故正确答案为B。