时间:2016-06-16 22:12:30
1、两个数的差是2345,两数相除的商是8,求这两个数之和_____。
A: 2353B: 2896C: 3015D: 3456
参考答案: C 本题解释:C[解析]根据题意,两数相除商是8,则说明被除数是除数的8倍,两数相减结果2345应为除数的7倍,从而求得除数2345÷7=335,被除数为335×8=2680,两数和为2680+335=3015,答案为C。
2、4532×79÷158的值是_____。
A: 2266B: 2166C: 2366D: 2362
参考答案: A 本题解释:【答案】A。解析:4532×79÷158=4532÷(158÷79)=4532÷2=2266。故正确答案为A。
3、甲、乙、丙三队在A、B两块地植树,A地要植树900棵,B地要植树1250棵,已知甲、乙、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地植树。两块地同时开始同时结束,乙应在开始后第几天从A地转到B地?_____
A: 5B: 7C: 9D: 11
参考答案: D 本题解释:D【解析】 植树共需(900+1250)÷(24+30+32)=25(天)。乙应在A地干(900-24×25)÷30=10(天),第11天转到B地。故本题正确答案为D。
4、某住户安装了分时电表,白天电价是0.55元,夜间电价是0.3元,计划7月份用电400度,电费不超过160元,那么,白天用电不应该超过多少度?_____
A: 150B: 160C: 170D: 180
参考答案: B 本题解释:【答案】B。解析:设白天用电最大度数为x,夜间用电度数为400-x,那么0.55x+0.3(400-x)≤160,解得x≤160。故选B。
5、152个球,放入若干个同样的箱子中,一个箱子最少放10个,最多放20个,且各个箱子的球数均不相同,问有多少种放法?(不计箱子的排列,即两种放法,经过箱子的重新排列后,是一样的,就算一种放法)_____
A: 1B: 7C: 12D: 24
参考答案: A 本题解释:A【解析】 设箱子个数为m,因为每只箱子的球数均不相同,最少放10个,最多放20个,所以m≤20-10+1=11。如果m=11,那么球的总数≥10×11+(0+1+2+…+10)=110+55>152,所以m≤10。如果m≤9,那么球的总数≤10×9+(10+9+8+…+2)=90+54=144<152,所以m=10在m=10时,10×10+(10+9+…+1)=155=152+3,所以一个箱子放10个球,其余箱子分别放11,12,14,15,16,17,18,19,20个球,总数恰好为152,而且符合要求的放法也只有这一种。故本题正确答案为A。
6、某企业有甲、乙、丙三个部门,已知三个部门员工的人数比为4:5:6,平均年龄是34岁,甲部门员工的平均年龄是30岁,丙部门员工的平均年龄是20岁。问乙部门员工的平均年龄是多少岁?_____
A: 45B: 48C: 51D: 54
参考答案: D 本题解释:D.【解析】这是一道加权平均数问题。设乙部门员工的平均年龄为x岁,则有<p>具体计算时,x=54。因此,本题的正确答案为D选项。
7、甲、乙、丙三人钱数各不相同,甲最多,他拿出一些钱给乙和丙,使乙和丙的钱数都比原来增加了两倍,结果乙的钱最多;接着乙拿出一些钱给甲和丙,使甲和丙的钱数都比原来增加了两倍,结果丙的钱最多;最后丙拿出一些钱给甲和乙,使甲和乙的钱数都比原来增加了两倍,结果三人钱数一样多了。如果他们三人共有81元,那么三人原来的钱分别是多少元?_____
A: 20,11,50 B: 19,7,55 C: 12,9,60 D: 11,15,55
参考答案: B 本题解释:B。【解析】三人最后一样多,所以都是81÷3=27元,然后我们开始还原:1.甲和乙把钱还给丙:每人增加2倍,就应该是原来的3倍,所以甲和乙都是27÷3=9,丙是81-9-9=63;2.甲和丙把钱还给乙:甲9÷3=3,丙63÷3=21,乙81-3-21=57;3.最后是乙和丙把钱还给甲:乙57÷3=19,丙21÷3=7,甲81-19-7=55元。
8、三个单位共有180人,甲、乙两个单位人数之和比丙单位多20人,甲单位比乙单位少2人,求甲单位的人数_____
A: 48人B: 49人C: 50人D: 51人
参考答案: B 本题解释:【答案】B,列方程即可求解
9、某城市居民用水价格为:每户每月不超过5吨的部分按4元/吨收取,超过5吨不超过10吨的部分按6元/吨收取,超过10吨的部分按8元/吨收取。某户居民两个月共交水费108元,则该户居民这两个月用水总量最多为多少吨?_____
A: 21B: 24C: 17.25D: 21.33
参考答案: A 本题解释:【解析】A。水量越大,费用越高,所以要用水最多,所以每个月应该用满10吨,所以总吨数为20+(108-100)/8=21.
10、某校图书馆新购进120本图书,其中教育学类书60本,心理学类40本,有30本既不属于教育学类也不属于心理学类,则这批书中教育心理学书有多少本?_____
A: 10B: 20C: 30D: 40
参考答案: A 本题解释:A【解析】设教育心理学书购进X本。则根据两集合容斥原理核心公式可得︰60+40-x=120-30x=10,故答案为A选项。
11、有四个数,其中每三个数的和分别是45,46,49,52,那么这四个数中最小的一个数是多少?_____
A: 12B: 18C: 36D: 45
参考答案: A 本题解释:【答案】A。解析:将45、46、49、52直接相加,可知其值等于原来四个数之和的3倍,于是可知原四个数字之和为:(45+46+49+52)÷3=64,因此最小的数为:64-52=12,故选择A选项。老师点睛:45为最小的三个数之和,平均数为15,则最小的数必然小于15,仅A符合。
12、n为100以内的自然数,那么能令2n-1被7整除的n有多少个?_____
A: 32B: 33C: 34D: 35
参考答案: B 本题解释:答案:B.[解析]当n是3的倍数的时候,2n-1是7的倍数。也就是求100以内3的倍数,从3到99,共有33个。故选B。
13、小张从家到单位有两条一样长的路.一条是平路、另一条是一半上坡路,一半下坡路,小张上班走这两条路所用的时间一样多。已知下坡的速度是平路的1.5倍,那么上坡的速度是平路的_____倍。
A: 3/5B: 2/5C: 1/4D: 3/4
参考答案: D 本题解释:【答案】D。解析:因为距离和时间都相同,则可以设路程是1,时间也是1,那么平路的速度为1÷1=1,又因为上坡和下坡路各一半也相同,那么上坡和下坡的路程都是O.5。下坡的速度为1.5,则下坡时问为0.5/1.5=1/3,因此上坡时间为1—1/3=2/3,上坡速度为1/2÷2/3=3/4。
14、一瓶挥发性药物,每天挥发5毫升,15天后挥发了全部的75%,假如每天挥发的速度不变,余下的几天能挥发完?_____
A: 4B: 5C: 6D: 7
参考答案: B 本题解释:B【解析】5×15÷75%=100ml这瓶药物共100ml,100-5×15=25ml,剩下25ml,25÷5=5天。
15、有一个电子钟,每走8分钟亮一次灯,每到整点响一次铃。中午12点整,电子钟响铃又亮灯。下一次既响铃又亮灯是几点钟?_____
A: 1B: 2C: 3D: 4
参考答案: B 本题解释:【答案】B。解析:8分钟和一个小时(60分钟)的最小公倍数是120分钟,所以再过120分钟又一次既响铃又亮灯。
16、173×173×173-162×162×162=_____。
A: 926183B: 936185C: 926187D: 926189
参考答案: D 本题解释:答案:D【解析】利用简单的猜测法。173的尾数是3,3的立方为27;162的尾数是2,2立方为8。两者相减尾数为9,所以判断173和162的立方之差的尾数为9。所以答案为D项。
17、已知2008被一些自然数去除,得到的余数都是10,那么,这些自然数共有_____。
A: 10B: 11C: 12D: 9
参考答案: B 本题解释:【答案解析】解析:余10=>说明2008-10=1998都能被这些数整除。同时,1998=2×3×3×3×37,所以,取1个数有37,2,3。---3个。,只取2个数乘积有3×37,2×37,3×3,2×3。---4个。,只取3个数乘积有3×3×37,2×3×37,3×3×3,2×3×3。---4个。只取4个数乘积有3×3×3×37,2×3×3×37,2×3×3×3。---3个。只取5个数乘积有2×3×3×3×37---1个。总共3+4+4+3+1=15,但根据余数小于除数的原理,余数为10,因此所有能除2008且余10的数,都应大于10=>2,3,3×3,2×3被排除。综上,总共有3+4+4+3+1-4=11个。
18、面值分别为1角、2角、5角的纸币共100张,总面值为30元整,其中2角的总面值比1角的总面值多1.6元。问面值1角、2角、5角的纸币各多少张?_____
A: 24 20 56 B: 28 22 40 C: 36 24 40 D: 32 24 44
参考答案: D 本题解释:D。本题可用代入排除法解答,可知答案为D项。
19、一件工作甲先做6小时,乙接着做12小时可以完成。甲先做8小时,乙接着做6小时也可以完成。如果甲先做3小时后,再由乙接着做,还需要多少小时完成? _____
A: 16B: 18C: 21D: 24
参考答案: C 本题解释:C【解析】设甲、乙两人每小时的工作量x、y,可列方程6x+12y=18x+6y=1 解得x=110y=130,甲先做了110×3,工作还剩1-310=710,故乙还需要710÷130=21 小时。故选C。
20、某区要从10位候选人中投票选举人大代表,现规定每位选举人必须从这10位中任选两位投票,问至少要有多少位选举人参加投票,才能保证有不少于10位选举人投了相同两位候选人的票?_____
A: 382位B: 406位C: 451位D: 516位
参考答案: B 本题解释:【答案】B。解析:从10位候选人中选2人共有种票,则每种票有9张相同时需要×9=405个
21、某班共有50名学生参加数学和外语两科考试,已知数学成绩及格的有40人,外语成绩及格的有25人,据此可知数学成绩及格而外语成绩不及格者_____。
A: 至少有10人B: 至少有15人C: 有20人D: 至多有30人
参考答案: B 本题解释:答案:B【解析】这是一个集合问题,首先可排除答案D,因为与已知条件“外语及格25人”即“外语不及格25人”不符;其次排除C,因为仅以外语及格率为50%推算数学及格者(40人)中外语不及格人数为40×50%=20(人),缺乏依据,实际上,数学及格者中外语不及格的人数至少为25-(50-40)=15人,答案为B。
22、某月刊杂志,定价2.5元,劳资处一些人订全年,其余人订半年,共需510元,如果订全年的改订半年,订半年的改订全年,共需300元,劳资处共多少人?_____
A: 20 B: 19 C: 18 D: 17
参考答案: C 本题解释: 【解析】本题用解方程的方法也可以解答,但是速度较慢。由题意可知,如果劳资处所有人都订一年半的话,总计810元;而单人订一年半的月刊需元;所以共有人。故选C。
23、甲以每小时6千米的速度步行从A地前往B地,在甲出发90分钟时,乙发现甲落下了重要物品,立即骑自行车以每小进12千米的速度追甲,终于在上午11点追上了甲。问甲出发时间是上午几点? _____
A: 7 B: 8 C: 9 D: 10
参考答案: B 本题解释:B。追及路程为6×1.5=9千米,甲乙速差为12-6=6千米/小时,则乙追上甲需要9÷6=1.5小时。因此甲出发时间是早上8点。故选B项。
24、有100人参加运动会的三个比赛项目,每人至少参加一项,其中未参加跳远的有50人,未参加跳高的有60人,未参加赛跑的有70人。问至少有多少人参加了不止一个项目?_____
A: 7 B: 10 C: 15 D: 20
参考答案: B 本题解释:【解析】B.最值问题。由题意,参加跳远的人数为50人,参加跳高的为40人,参加赛跑的为30人;即参加项目的人次为120人次;故欲使参加不止一项的人数最少,则需要使只参加一项的人数最多为x,参加3项的人数为y;故x+3y=120,x+y=100,解得y=10
25、有关部门要连续审核30个科研课题方案,如果要求每天安排审核的课题个数互不相等且不为零,则审核完这些课题最多需要_____。
A: 7天B: 8天C: 9天D: 10天
参考答案: A 本题解释:【答案解析】1+2+3+4+5+6+7=28,再加一个2等于30,但因为是要互不相等,所以8天的情况和更多的情况都不符合,只能是7天,也就是1+2+3+4+5+6+9的情况,选A。
26、二十几个小朋友围成一圈,按顺时针方向一圈一圈地连续报数。如果报2和200的是同一个人,那么共有_____个小朋友。
A: 22B: 24C: 27D: 28
参考答案: A 本题解释:A【解析】小朋友的人数应是(200-2)=198的约数,而198=2×3×3×11。约数中只有2×11=22符合题意。
27、某餐厅开展“每消费50元送饮料一瓶”的活动,某办公室的职员一起去该餐厅吃饭,每人花费18元,餐厅赠送了7瓶饮料。问去吃饭的人数可能是多少?_____
A: 17B: 19C: 21D: 23
参考答案: C 本题解释:C。送7瓶饮料说明总消费金额大于350小于400,代人选项发现只有21人时是21×18=378元符合条件。
28、一列队伍沿直线匀速前进,某时刻一传令兵从队尾出发,匀速向队首前进传送命令,他到达队首后马上原速返回,当他返回队尾时,队伍行进的距离正好与整列队伍的长度相等。问传令兵从出发到最后到达队尾所行走的整个路程是队伍长度的多少倍?_____
A: 0.5 B: 1.5C: 1 D: 2
参考答案: C 本题解释:【答案】C。解析:从队尾到队首,这是一个追及过程,追及的路程等于队伍的长。从队首返回队尾,这是一个相遇过程,返回队尾所行的路程都等于队伍的长。
29、某服装厂生产某种定型冬装,9月份销售每件冬装的利润是出厂价的25%(每件冬装的利润=出厂价-成本)。10月份将每件冬装的出厂价调低10%,成本降低10%,销售件数比9月份增长80%,那么该厂10月份销售这种冬装的利润比9月份的利润总额增长:_____
A: 2%B: 8%C: 40.5%D: 62%
参考答案: D 本题解释:【解析】D。设出厂价为100,则9月份单件利润是25,成本为75。10月的出厂价为90,成本为75×0.9=67.5,单件利润为90-67.5=22.5。设9月的销售量为1,则10月为1.8。9月总利润为25,10月为1.8×22.5=40.5,10月比9月总利润增长40.5÷25-1=62%。
30、小明用5天时间看完了一本200页的故事书。已知第二天看的页数比第一天多,第三天看的页数是第一、二两天看的页数之和,第四天看的页数是第二、三两天看的页数之和,第五天看的页数是第三、四两天看的页数之和。那么小明第五天至少看了_____页。
A: 84B: 78C: 88D: 94
参考答案: A 本题解释:【答案】A。解析:设小明第一天看了a页,第二天看了b页,则前五天看的页数依次为a,b,a+b,a+2b,2a+3b。这些数的和是200,可得5a+7b=200。因为5a与200都是5的倍数,所以b是5的倍数。因为ba,所以上式只有两组解b=20,a=12;b=25,a=5。将这两组解分别代入2a+3b,得到第五天至少看了84页。
31、把自然数n的各位数字之和记为Sn,如n=38,Sn=3+8=11。若对某些自然数n满足n-Sn=2007,则n最大值是_____。
A: 2010B: 2016C: 2019D: 2117
参考答案: C 本题解释:C【解析】当n-Sn=2007时,n为20ab的形式,依题意有20ab-(2+a+b)=2007,可得2000+10a+b-2-a-b=2007,得出a=1。当b取最大值9时,n有最大为2019。故选C。
32、四个相邻质数之积为17017,他们的和为_____
A: 48B: 52C: 61D: 72
参考答案: A 本题解释:答案:A【解析】17017分解因数为17×13×11×7,他们的和为48。
33、有苹果,桔子各一筐,苹果有240个,桔子有313个,把这两筐水果平均分给一些小朋友,已知苹果分到最后余2个,桔子分到最后还余7个,求最多有多少个小朋友参加分水果?_____
A: 14 B: 17 C: 28 D: 34
参考答案: D 本题解释:【答案】D。解析:240-2=238,313-7=306,此题即要求238和306的最大公约数,238=2×7×17、306=2×3×3×17,可知最大公约数是34。
34、用方形地砖铺一块了正方形地面,四周用不同颜色的地砖加以装饰,用47块不同颜色的砖装饰了这块地面相邻的两边。这块地面一共要用_____块砖。
A: 324B: 576C: 891D: 1024
参考答案: B 本题解释:B【解析】最外层每边铺地砖(47+1)÷2=24块,故一共要用24×24=576块砖。
35、某车间三个班组共同承担-批加工任务,每个班组要加工100套产品。因为加工速度有差异,一班组完成任务时二班组还差5套产品没完成,三班组还差10套产品没完成。假设三个班组加工速度都不变,那么二班组完成任务时,三班组还剩_____套产品未完成。
A: 5 B: 80/19 C: 90/19 D: 100/19
参考答案: D 本题解释:D。工程问题。相同的时间内,一班组完成了100套,二班组加工了100-5=95(套),三班组加工了100-10=90(套),因此二班组、三班组的效率比为95∶90。当二班组完成任务时,即加工了100套,设此时三班组加工了x套,有95∶90=100∶x,得到x=1800/19。因此未完成的为100-1800/19=100/19(套)。
36、一袋白糖,第一次用去0.3斤,第二次用去余下的3/4,这时袋内还有白糖0.2斤,该袋糖原有多少斤?_____
A: 1.1B: 0.5C: 1.5D: 2
参考答案: A 本题解释: A 【解析】0.2÷(1-3/4)+0.3=1.1。
37、甲、乙两人从400米的环形跑道的一点A背向同时出发,8分钟后两人第三次相遇。已知甲每秒钟比乙每秒钟多行0.1米,那么,两人第三次相遇的地点与A点沿跑道上的最短距离是_____
A: 166米B: 176米C: 224米D: 234米
参考答案: B 本题解释:B.【解析】400-(480×0.1)=352/2=176米。
38、某商场开展购物优惠活动:一次购买300元及以下的商品九折优惠;一次购买超过300元的商品,其中300元九折优惠,超过300元的部分八折优惠。小王购物第一次付款144元,第二次又付款310元。如果他―次购买并付款,可以节省多少元?_____
A: 16B: 22.4C: 30.6D: 48
参考答案: A 本题解释:A【解析】统筹优化问题。由题意,第一次付款144元可得商品原价为160元;第二次付款为310元,可得原价为350元。故总价510元,按照优惠,需付款300×0.9+210×0.8=438元,节省了454-438=16元。
39、在同一环形跑道上小陈比小王跑得慢,两人都按同一方向跑步锻炼时,每隔12分钟相遇一次;若两人速度不变,其中一人按相反方向跑步,则隔4分钟相遇一次。问两人跑完一圈花费的时间小陈比小王多几分钟?_____
A: 5B: 6C: 7D: 8
参考答案: B 本题解释:不妨设小王和小陈速度分别为x,y,跑道长度为s,则:两人都按同一方向跑步锻炼时,每隔12分钟相遇一次,说明s/(x—y)=12;若两人速度不变,其中一人按相反方向跑步,则每隔4分钟相遇一次,说明s/(x+y)=4;解得s=6x=12y,所以两人跑完一圈花费的时间小陈比小王多6分钟。
40、某市财政局下设若干处室,在局机关中不是宣传处的有206人,不是会计处的有177人,已知宣传处与会计处共有41人,问该市财政局共有多少人?_____
A: 218 B: 247C: 198D: 212
参考答案: D 本题解释: 【解析】由题意有:人。所以选D。
41、一根钢管,如果把它锯成4段,需要24分钟。照此速度,如果将它锯成8段,需要多长时间?_____
A: 42分钟B: 48分钟C: 56分钟D: 64分钟
参考答案: C 本题解释:【答案】C。解析:把一根钢管锯成4段有3个切口,并且需要24分钟,一个切口需要8分钟。若将它锯成8段,将有7个切口,则一共需要7×8=56分钟。故正确答案为C。
42、符号消费是指在消费过程中,消费者除消费产品本身以外,同时也消费这些产品所象征和代表的意义、心情、美感、档次、情调和气氛,即对这些符号所代表的“意义”或“内涵”的消费。根据上述定义,下列各项中体现了符号消费的是_____。
A: 大张和小伟结伴去背包旅行,小伟买了个专业登山包,大张随便背了个包就去了,结果被小伟嘲笑了一番B: 面点师小金每到一个地方,都会去当地知名的蛋糕店点上几份甜品,并且花上几个小时仔细品尝C: 某甜品店最近生意火爆,顾客都指明要该店新推出的一款特色饮品D: 老李退休后非常注重养生,买了一大堆的保健品
参考答案: A 本题解释:A。定义的关键词是“意义”和“内涵”。A项,小伟和大张的包都能够满足旅行的需要,但小伟嘲笑大张的包,说明他购买专业登山包,主要是消费它所代表的时尚、档次等“内涵”,并不是在于包本身,因此符合定义。B项,小金作为面点师,去仔细品尝知名蛋糕店的甜品,是为了改进、提高自己的手艺,而不单纯是为了消费,因而也就更谈不上是符号消费。C项,顾客购买新推出的特色产品,针对的是产品本身。D项,老李购买保健品是出于养生的需求,他消费的也是产品本身。
43、某国家对居民收入实行下列税率方案;每人每月不超过3000美元的部分按照1%税率征收,超过3000美元不超过6000美元的部分按照X%税率征收,超过6000美元的部分按Y%税率征收(X,Y为整数)。假设该国某居民月收入为6500美元,支付了120美元所得税,则Y为多少_____
A: 6B: 3C: 5D: 4
参考答案: A 本题解释:A【解析】该国某居民月收入为6500美元要交的所得税为3000×1%+3000×X%+(6500-3000-3000)×Y%=120,化简为6X+Y=18,由于6X和18都能被6整除,因此Y也一定能被6整除分析选项,只有A符合。
44、已知一杯茶水有若干克,第一次加入一定量的水后,茶水的浓度为6%,第二次又加入同样多的水后,茶水的浓度为4%,求第三次加入同样多的水后茶水的浓度为多少?_____
A: 1%B: 2%C: 3%D: 3.5%
参考答案: C 本题解释:C【解析】设第一次加完水后,含茶6份,含水94份,这样茶水浓度就为6%,第二次加完水后,茶水总量为6÷4%=150份,所以第二次加水为150-100=50份,第三次加入的水也为50份,茶水浓度为6÷(150+50)=0.03=3%。所以,第三次加入同样多的水后茶水的浓度变为3%。故本题正确答案为C。
45、小张从华兴园到软件公司上班要经过多条街道(软件公司在华兴园的东北方)。假如他只能向东或者向北行走,则他上班不同走法共有()。
A: 12种B: 15种C: 20种D: 10种
参考答案: D 本题解释:【答案】D。解析1:图中每个交叉点上的数字表示到达该点的方法数。只能向东或向北行走,则到达某点的方法数等于其西边一点和南边一点方法数的加和。因此到达软件公司有10种走法,正确答案为D。解析2:只能向东或者向北行走,因此从华兴园到软件公司只需要向东走2个格,向北走3个格即可。可转化为朝着一个方向走的5步,每一步都有2种选择:向东或者向北,则到软件园的走法有5×2=10种。故正确答案为D。
46、一项工程由甲单独做需要15天做完,乙单独做需要12天做完,二人合做4天后,剩下的工程由甲单独做,还需做几天方可做完?_____。
A: 6 B: 8C: 9 D: 5
参考答案: A 本题解释:A 【解析】依题意,甲每天完成总工程的1/15,乙每天完成总工程的1/12,甲、乙合作4天共完成(1/12+1/15) ×4=3/5,故剩下的工程甲需要的时间为(1—3/5)/(1/15)=6,总计算式即为[1一(1/12+1/15)]×4/(1/15)=6(天)。
47、有三个居委会的居民共订600份《华西都市报》,每个居委会至少订199份,最多订201份,则不同的订报方式有_____种。
A: 3B: 5C: 6D: 7
参考答案: D 本题解释:【答案】D。解析:三个居委会分别订200、200、200和199、200、201两种情况,前一种方法数为1,后一种方法数为3×2×1=6,1+6=7,故正确答案为D。
48、某办公室5人中有2人精通德语。如从中任意选出3人,其中恰有1人精通德语的概率是多少?_____
A: 0.5B: 0.6C: 0.7D: 0.75
参考答案: B 本题解释:【答案】B。
49、某村有甲乙两个生产小组,总共50人,其中青年人共13人。甲组中青年人与老年人的比例是2∶3,乙组中青年人与老年人的比例是1∶5,甲组中青年人的人数是:_____
A: 5人B: 6人C: 8人D: 12人
参考答案: C 本题解释:【答案】C。解析:设甲组人数为5x,乙组人数为6y。有,解得x=4。因此甲组青年人的人数为8。
50、将所有自然数,自1开始依次写下去得到:12345678910111213……,试确定第206788个位置上出现的数字_____。
A: 3B: 0C: 7D: 4
参考答案: C 本题解释:【答案】C。解析:一位数占l×9=9个位置,二位数占2×90=180个位置,三位数占3×900=2700个位置,四位数占4×9000=36000个位置,还剩:206788-9-180-2700-36000=167899,167899÷5=33579……4,所以答案为33579+10000=43579的第4个数字7。故应选C。
51、一条街上,一个骑车人和一个步行人相向而行,骑车人的速度是步行人的3倍,每个隔10分钟有一辆公交车超过一个行人。每个隔20分钟有一辆公交车超过一个骑车人,如果公交车从始发站每隔相同的时间发一辆车,那么间隔几分钟发一辆公交车?_____
A: 10B: 8C: 6D: 4
参考答案: B 本题解释:B。【解析】设车速V车,人速V人,自行车速3V人,则(V车-V人)×10=20×(V车-3V人),V车=5V人,即车走人4倍位移追上人故T=4×V人×10/5V人=8。
52、一根木杆,第一次截去了全长的1/2,第二次截去所剩木杆的1/3,第三次截去所剩木杆的1/4,第四次截去所剩木杆的1/5,这时量得所剩木杆长为6厘米。问:木杆原来的长是多少厘米?_____
A: 15B: 26C: 30D: 60
参考答案: C 本题解释: C解析: 6÷(1-1/5)÷(1-1/4)÷(1-1/3)÷(1-1/2)6÷(4/5×3/4×2/3×1/2)6÷1/5=30(厘米)故本题选C。
53、小张数一篇文章的字数,二个二个一数最后剩一个,三个三个一数最后剩一个,四个四个一数最后剩一个,五个五个一数最后剩一个,六个六个一数最后剩一个,七个七个一数最后剩一个,则这篇文章共有多少字?_____
A: 501B: 457C: 421D: 365
参考答案: C 本题解释: 【解析】C。这道题实际只要考虑五个五个一数最后剩一个,三个三个一数最后剩一个,即可。这两个最好思考。只有501与421一幕了然,除以5余1。而501能被3整除,只有42。
54、李大夫去山里给一位病人出诊,他下午1点离开诊所,先走了一段平路,然后爬上了半山腰,给那里的病人看病。半小时后,他沿原路下山回到诊所,下午3点半回到诊所。已知他在平路步行的速度是每小时4千米,上山每小时3千米,下山每小时6千米。请问:李大夫出诊共走了多少路?_____
A: 5千米B: 8千米C: 10千米D: l6千米
参考答案: B 本题解释:
55、某市出租车运费计算方式如下:起步价2公里6元,2公里之后每增加1公里收费1.7元,6公里之后每增加1公里收费2.0元,不足1元按四舍五入计算。某乘客乘坐了31公里,应该付多少元车费? _____
A: 63 B: 64 C: 65 D: 66
参考答案: A 本题解释:A。2公里以内收费6元;2-6公里收费1.7×4=6.8元;6-31公里收费2×25=50元。因此总计应付车费62.8元,四舍五入即63元。故选A项。
56、毛毛骑在牛背上过河,他共有甲、乙、丙、丁4头牛,甲过河要2分钟,乙过河要3分钟,丙过河要4分钟,丁过河要5分钟。毛毛每次只能赶2头牛过河,要把4头牛都赶到对岸去,最少要多少分钟? _____
A: 16B: 17C: 18D: 19
参考答案: A 本题解释:A。若要时间最短,则一定要让耗时最长的两头牛同时过河。先骑甲、乙过河,骑甲返回,共用5分钟;再骑丙、丁过河,骑乙返回,共用8分钟;最后再骑甲、乙过河,用3分钟,共用时5+8+3=16分钟。
57、蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀,现在这三种小虫共18只,有118条腿和18对翅膀,蜘蛛,蜻蜓,蝉各几只_____
A: 5、5、8B: 5、5、7C: 6、7、5D: 7、5、6
参考答案: A 本题解释:【答案】A。解析:这是道复杂的“鸡兔同笼”问题,首先,蜻蜓和蝉都是6条腿,数腿的时候可以放在一起考虑,因此蜘蛛有(118—6×18)÷(8—6)=5只,因此蜻蜓和蝉共有18—5=13只,从而蜻蜓有(18—1×13)÷(2—1)=5只,蝉有13—5=8只。
58、在一次有四个局参加的工作会议中,土地局与财政局参加的人数比为5∶4,国税局与地税局参加的人数比为25∶9,土地局与地税局参加人数的比为10∶3,如果国税局有50人参加,土地局有多少人参加?_____
A: 25B: 48C: 60 D: 63
参考答案: C 本题解释: 【解析】根据以上比例关系,可得出土地局︰地税局︰国税局=30︰9︰25,所以土地局有60人参加。所以选C。
59、一间长250米、宽10米、高4米的仓库放置了1000个棱长为1米的正方体箱子,剩余的空间为多少立方米_____
A: 0B: 1500C: 5000D: 9000
参考答案: D 本题解释: 【解析】D。
60、某S为自然数,被10除余数是9,被9除余数是8,被8除余数是7,已知100<S<1000,请问这样的数有几个?_____
A: 5 B: 4 C: 3 D: 2
参考答案: D 本题解释:D。【解析】被N除余数是N-1,所以这个数字就是几个N的公倍数-1。10,9,8的公倍数为360n(n为自然数),因为100<S<1000,所以有两个数符合条件。
61、一本100多页的书,被人撕掉了4张,剩下的页码总和为8037,则该书最多有多少页?_____
A: 134B: 136C: 138D: 140
参考答案: A 本题解释:【答案】A。解析:撕掉一张纸,其正反两面的两个页码之和为奇数,则撕掉4张,页码总数必为偶数,剩余页码和为8037,所以原书的页码总和必然为奇数,由此排除BD(BD选项能被4整除,而连续4页的页码和必然为偶数)。代入C,可知整书的页码总和为(1+138)÷2×138=9591,于是撕掉的页码和为9591-8037=1554,那么撕掉的8页的页码平均值为194.25,显然与最多138页矛盾。故正确答案为A。
62、某鞋业公司的旅游鞋加工车间要完成一出口订单,如果每天加工50 双,要比原计划晚3 天完成,如果每天加工60 双,则要比原计划提前2 天完成,这一订单共需要加工多少双旅游鞋?_____
A: 1200 双 B: 1300 双 C: 1400 双 D: 1500 双
参考答案: D 本题解释:【答案】D[解析]能被50、60整除的,排除B和C,再依次代入A和D,A不符合,所以选D。
63、三名小孩儿中有一名学龄前儿童(年龄不足6岁),他们的年龄都是质数,且依次相差6岁,他们的年龄之和为多少岁?_____
A: 21B: 27C: 33D: 39
参考答案: C 本题解释:【答案解析】6以下的质数有2、3、5,2+6=8不是质数,3+6=9也不是质数。因此最小的那个年龄为5岁,他们的年龄之和为5+11+17=33岁。
64、要折叠一批纸飞机,若甲单独折叠要半个小时完成,乙单独折叠需要45分钟完成,若两人一起折叠,需要多少分钟完成?_____
A: 10B: 15C: 16D: 18
参考答案: D 本题解释:答案:D【解析】此题实质上是一道工程问题。设纸飞机总量为1,则甲甲每分钟完成1/30,乙每分钟完成1/45,甲乙共花时间为1/(1/30+1/45)=18。故正确答案应为选项D。
65、27个小运动员在参加完比赛后,口渴难耐,去小店买饮料,饮料店搞促销,凭三个空瓶可以再换一瓶,他们最少买多少瓶饮料才能保证一人一瓶?_____
A: 21 B: 23C: 25D: 27
参考答案: A 本题解释:A。【解析】代入法,购买21瓶可换回7瓶,显然满足。但本题有问题,如果计算本题,购买19平饮料即可。19瓶饮料可以换6瓶新的饮料,这六瓶又可以换得2瓶,一共得到19+6+2+1=28瓶。如果一定要说21时正确答案的话,那只能从口渴难耐四个字找原因了。只换一次,最少要购买21瓶。
66、银行一年定期存款利率是4. 7%,两年期利率是5. 1%,且利率税扣除20%,某人将1000元存三年,三年后本息共多少元?_____
A: 1074.5B: 1153.79C: 1149.0D: 1122.27
参考答案: D 本题解释:D 解析: 1000×(1+4. 7%×80%)×(1+5. 1%×2×80%)=1122. 27(元)。故本题选D。
67、甲、乙、丙、丁四人为地震灾区捐款,甲捐款数是另外三人捐款总数的一半,乙捐款数是另外三人捐款总数的1/3,丙捐款数是另外三人捐款总数的1/4,丁捐款169元。问四人一共捐了多少钱?_____
A: 780元B: 890元C: 1183元D: 2083元
参考答案: A 本题解释:【答案解析】最典型的代入型题目…根据题意可以知道总数和可以被3、4、5整除,满足的只有A。
68、小王的手机通讯录上有一手机号码,只记下前面8个数字为15903428。但他肯定,后面3个数字全是偶数,最后一个数字是6,且后3个数字中相邻数字不相同,请问该手机号码有多少种可能? _____
A: 15B: 16C: 20D: 18
参考答案: B 本题解释:答案:B 解析:根据题意,倒数第二个数字有0、2.、4、8四种可能;倒数第三个数字同样有4种可能(只需与倒数第二个数字不同即可),故该手机号为4×4=16种可能。
69、假设五个相异的正整数的平均数是15,中位数是18,则此五个相异的正整数中最大数的最大值可能是多少?_____
A: 24B: 32C: 35D: 42
参考答案: C 本题解释:五个数和为15×5=75,第三大的数是18。要让最大的数尽可能大,则其他数尽可能小。最小的两个数为1、2。第二大的数最小为19,所以最大的数的最大值为75-1-2-18-19=35。
70、商场的自动扶梯以匀速由下往上行驶,两个孩子嫌扶梯走得太慢,于是在行驶的扶梯上,男孩每秒钟向上走2个梯级,女孩每2秒钟向上走3个梯级。结果男孩用40秒钟到达,女孩用50秒钟到达。则当该扶梯静止时,可看到的扶梯梯级有_____。
A: 80级 B: 100级 C: 120级 D: 140级
参考答案: B 本题解释:B。【解析】男孩所走的台阶数为40×2=80,女孩所走的台阶数为50/2×3=75,那么电梯的速度就应该为(80-75)/(50-40)=0.5,电梯所经过的台阶就为40×0.5=20, 电梯经过的台阶加上男孩经过的台阶,就是电梯的台阶数,即100级。
71、一批商品,按期望获得50%的利润来定价,结果只销售掉70%的商品,为尽早销售掉剩下的商品,商店决定按定价打折出售,这样所获得的全部利润,是原来所期望利润的82%,问打了多少折扣?_____
A: 4折B: 6折C: 7折D: 8折
参考答案: D 本题解释:【答案】D。解析:设共有商品10件,每件成本为10元,则原定价为10×(1+50%)=15元,共卖出10×70%=7件商品,利润为10×50%×7=35元,剩余3件。10件商品总利润为10×10×50%×82%=41元,设剩余3件所打折扣为x,则由题意得35+(15x-10)×3=41,解得x=0.8,故正确答案为D。
72、一笔奖金分一等奖、二等奖和三等奖,每个一等奖的奖金是每个二等奖奖金的两倍,每个二等奖的奖金是每个三等奖奖金的两倍。如果评一、二、三等奖各两人,那么每个一等奖金是308元;如果评一个一等奖,三个三等奖,两个二等奖,那么一等奖的奖金是多少元_____
A: 154B: 196C: 392D: 490
参考答案: C 本题解释:【答案解析】①每个二等奖奖金为:308÷2=154(元)。②每个三等奖奖金为:154÷2=77(元)。③一共有奖金:(308+154+77)×2=1078(元)。④设一个三等奖奖金为x元,则一个二等奖奖金为2x元,一个一等奖奖金为4x元,列方程得:4x+4x+3x=1078,x=98。一等奖奖金为:98×4=392(元)。故正确答案为C。
73、小明和小方各走一段路,小明走的路程比小方多1/5,小方用的时间比小明多1/8。小明和小方的速度之比是多少?_____
A: 37∶14B: 27∶20C: 24∶9D: 21∶4
参考答案: B 本题解释: B【解析】依题意,小明与小芳路程的比是(1+1/5):1=6:5小明与小芳时间的比是1:(1+1/8)=8:9小明与小芳速度的比是:6/8:5/9=27:20。
74、分数4/9、17/35、101/203、3/7、151/301中最大的一个是_____。
A: 4/9B: 17/35C: 101/203D: 151/301
参考答案: D 本题解释:D【解析】首先目测可以知道3/7、17/35和101/203都小于1/2,而4/9和151/301都大于1/2,所以只要比较二者的大小就可以,通过计算,151/301大,所以选择D。
75、某乐队举办一场演唱会的收入是7000元,乐队的主唱分得其中的25%,另外5名成员平分余下的收入,那么他们每人分得多少元?_____
A: 1750B: l400C: 1120D: 1050
参考答案: D 本题解释:【解析】D。另外5名成员平分余下的收入,每人拿15%,即1050元。
76、有一个项目,由小刘单独做需要3天完成,由小李单独做需要15天完成,而小刘、小李、小王三个人合作需要1.5天完成。问小李和小王两个人合作完成这个项目需要多少天?_____
A: 2B: 3C: 4D: 5
参考答案: B 本题解释:B.【解析】这是一道工程问题。设总工作量为15,那么小刘的工作效率为5,小李的工作效率为1,三人的工作效率为10,那么小王的工作效率为4,也就是小李和小王的效率为5,两人合作需要3天完成。因此,本题的答案为B选项。
77、已知一个长方体的长、宽、高分别为10分米、8分米和6分米,先从它上面切下一个最大的正方体,然后再从剩下的部分上切下一个最大的正方体。问切除这两个正方体后,最后剩下部分的体积是多少?_____
A: 212立方分米B: 200立方分米C: 194立方分米D: 186立方分米
参考答案: B 本题解释:【答案解析】根据题意可知,第一次切下的正方体的边长为6分米,第二次切下的正方体的边长为4分米,故最后剩下部分的体积是10×8×6-6×6×6-4×4×4=200立方分米。
78、一个五位数,左边三位数是右边两位数的5倍,如果把右边的两位数移到前面,则所得新的五位数要比原来的五位数的2倍还多75,则原来的五位数是_____。
A: 12525B: 13527C: 17535D: 22545
参考答案: A 本题解释:【答案解析】直接代入,选A。
79、某单位今年一月份购买5包A4纸、6包B5纸,购买A4纸的钱比B5纸少5元;第一季度该单位共购买A4纸15包、B5纸12包、共花费510元;那么每包B5纸的价格比A4纸便宜_____。
A: 1.5元B: 2.0元C: 2.5元D: 3.0元
参考答案: C 本题解释:C【解析】方程问题。设A4纸和B5纸的价格分别为x元和y元。由题意可得方程,6y-5x=5,15x+12y=510解得x=20,y=17.5,所以每包纸比A4纸便宜20-17.5=2.5元。答案选择C选项。
80、有一本畅销书,今年每册书的成本比去年增加了10%,因此每册书的利润下降了20%,但是今年的销量比去年增加了70%。则今年销售该畅销书的总利润比去年增加了_____。
A: 36%B: 25%C: 20%D: 15%
参考答案: A 本题解释:每本书的利润值下降了20%,为原来的0.8,销量增加了70%,为原来的1.7,1.7×0.8=1.36,1.36—1=0.36,即为36%。
81、商店为某鞋厂代销200双鞋,代销费用为销售总额的8%。全部销售完后,商店向鞋厂交付6808元。这批鞋每双售价为多少元?_____
A: 30.02B: 34.04C: 35.6D: 37
参考答案: D 本题解释: 【解析】D。解法一、设每双售价x元,则200x×(1-8%)=6808;解法二、交付钱数6808元必然能除尽每双售价,依此排除A、C。如果是B,很容易发现200双正好6808元,没有代销费用了。
82、某社团共有46人,其中36人爱好戏剧,30人爱好体育,38人爱好写作,40人爱好收藏,问这个社团至少有_____人以上四项活动都喜欢。
A: 5B: 6C: 7D: 8
参考答案: B 本题解释:【答案解析】根据题意可知,不爱好戏剧的有46-36=10人,不爱好体育的有46-30=16人,不爱好写作的有46-38=8人,不爱好收藏的有46-40=6人。要使四项活动都喜欢的人最少,则应使不爱好这四项活动的人最多,即使不爱好这四项活动的人均不重复,所以至少有46-(10+16+8+6)=6人四项活动都喜欢。所以正确答案为B项。
83、某班学生不到50人,在一次考试中,有1/7人得优,1/3人得良,1/2人及格,其余的均不及格,那么不及格的人数是_____
A: 1 B: 2 C: 3 D: 4
参考答案: A 本题解释: A。通过题干可知,该班级最少人数应为7、3、2的最小公倍数,又因为不能超过50人,所以该班人数为7×3×2=42人。那么不及格的人数为42…61421=1。故正确答案为A。
84、有4支队伍进行4项比赛,每项比赛的第一、第二、第三、第四名分别得到5、3、2、1分。每队的4项比赛得分之和算作总分,如果已知各队的总分不相同,并且A队获得了三项比赛的第一名,问总分最少的队伍最多得多少分? _____
A: 7B: 8C: 9D: 10
参考答案: B 本题解释:【答案】B 解析∶四项比赛的总得分是(5+3+2+1)×4=44分,A已得15分,最少得16分,剩下三人总得分最多为28分,要求得分最少的人得分最多且得分互不相同,则三人得分分别是8,9,11。此时一人得三项第二和一项第三,一人得一项第二和三项第三。
85、小王和小李合伙投资,年终根据每人的投资进行分红,小王取了全部的1/3另加9万元,小李取剩余1/3和剩下的14万元。问小王比小李多得多少万元_____
A: 0B: 1C: 2D: 3
参考答案: B 本题解释:B【解析】小李取剩下的1/3和剩下的14万元,即说明小李获得了14×3/2=21万元。又因为小王取了全部的1/3另加9万元,所以分红共有(21+9)×3/2=45万元。因此小王获得了45-21=24万元,所以小王比小李多得24-21=3万元。
86、一篇文章,现有甲乙丙三人,如果由甲乙两人合作翻译,需要10小时完成,如果由乙丙两人合作翻译,需要12小时完成,现在先由甲丙两人合作翻译4小时,剩下的再由乙单 独去翻译,需要12小时才能完成,则,这篇文章如果全部由乙单独翻译,需要_____小时能够完成。
A: 15B: 18C: 20D: 25
参考答案: A 本题解释:正确答案是 A。考点:工程问题解析:设总量为1,由题意知甲乙合作的效率为1/10,乙丙合作的效率为1/12。题目给出完成该项工程的过程是甲丙先合作4个小时,乙单独翻译12个小时。在这个工作过程中,甲完成了4个小时的工作量,已完成了12个小时的工作量,丙完成了4个小时的工作量,保持此总量不变,将乙的工作拆分为三个独立的4个小时,重新为如下工作过程:甲乙先合作4个小时,乙丙再合作4个小时,最后乙单独做4个小时,仍然可以保证工程完成。于是假设乙的效率为y,可知4×1/10+4×1/12+4y=1,解得y=1/15,于是乙单独完成需要15个小时,故正确答案为A。
87、蜘蛛有8只脚,蜻蜓有6只脚和2对翅膀,蝉有6只脚和1对翅膀,现在三种昆虫共18只,共有118只脚和20对翅膀,则其中有蜻蜓多少只?_____
A: 5B: 6C: 7D: 8
参考答案: C 本题解释:【答案】C。解析:假设全是6只脚的昆虫,18只共有108只脚,因此多出的118—108=10(只)脚来自于10÷(8—6)=5(只)蜘蛛。而在剩下的18—5=13(只)昆虫中,假设都是1对翅膀,同样地分析可知,有蜻蜓(20—13)÷(2一1)=7(只)。
88、小红把平时节省下来的全部五分硬币先围成一个正三角形,正好用完,后来又改围成一个正方形,也正好用完。如果正方形的每条边比三角形的每条边少用5枚硬币,则小红所有五分硬币的总价值是_____。
A: 1元 B: 2元 C: 3元 D: 4元
参考答案: C 本题解释:C。【解析】设三角形每条边X,正方形为Y,那么Y=X-5,同时由于硬币个数相同,那么3X=4Y,如此可以算出X=20,则硬币共有3×20=60个,硬币为5分硬币,那么总价值是5×60=300(分),得出结果。
89、四个学生做加法练习,任写一个六位数,然后把个位数字(不等于0)移到这个数的最左边产生一个新的六位数,最后把这个新六位数与原数相加,分别得到以下四个六位数。则哪个结果有可能正确? _____
A: 172536B: 568741C: 620708D: 845267
参考答案: C 本题解释:
90、(1.2)2+(1.3)2+(1.4)2+(1.5)2的值是_____。
A: 6.30 B: 6.49 C: 7.56 D: 7.34
参考答案: D 本题解释:D。本题可采用尾数法,(1.2)2尾数为4,(1.3)2尾数为9,(1.4)2尾数为6,(1.5)2尾数为5,4+9+6+5尾数为4,所以正确答案为D项。
91、一次象棋比赛共有10名选手参加,他们分别来自甲、乙、丙三个队,每个人都与其余九名选手各赛一盘,每盘棋的胜利者得1分,负者得0分,平局各得0.5分。结果甲队选手平均得4.5分,乙队选手平均得3.6分,丙队选手平均得9分,那么甲、乙、丙三队参加比赛的选手的人数依次是_____。
A: 6人、3人、1人B: 4人、5人、1人C: 3人、5人、2人D: 5人、1人、4人
参考答案: B 本题解释:B【解析】根据10名选手参加比赛,取胜者得1分,而丙队选手平均得分9分,这样丙队参赛选手只能是1人,且与其余9名选手比赛中应全部获胜。又根据每盘赛棋中胜者得1分,负者0分,平局各得0.5分,可知各队得分总数应是整数或小数部分的十位上是5,现乙队选手平均得3.6分,十位上是6,同样,甲、乙两队共有9人参赛,这样乙队参赛选手肯定是5人。因此甲队参赛选手人数是4人,乙队参赛选手人数是5人,丙队参赛选手人数是1人。
92、在一条公路两旁有四家工厂,工厂的职工人数如右图所示,现在要在这段路线上设立一个公共汽车站。问这个车站设在什么地方,可以使几家工厂的职工乘车方便?_____
A: 甲厂B: 乙厂C: 丙厂D: 丁厂
参考答案: C 本题解释:C【解析】四个工厂的职工人数总和的一半是:(1000+700+800+500)÷2=1500(人)。甲厂500人,丁厂1000人,它们都小于四厂总人数的一半。根据“小靠大”的原则,甲厂附近和丁厂附近都不是车站的最佳位置。甲厂与丁厂要分别向乙厂和丙厂靠,这样丙厂就相当于1000+700=1700(人),乙厂就相当于500+800=1300(人)。再由“小靠大”的原则,1700>1300,所以乙厂应向丙厂靠,即车站设在丙厂附近为最佳。故本题正确答案为C。
93、有四个数,其中每三个数的和分别是45,46,49,52,那么这四个数中最小的一个数是多少?_____
A: 15 B: 14 C: 13 D: 12
参考答案: D 本题解释:D。【解析】如果把4个数全加起来是什么?实际上是每个数都加了3遍。 (45+46+49+52)÷3=64就是这四个数的和,题目要求最小的数,用64减去52(某三个数和最大的)就是最小的数,等于12。
94、筑路队原计划每天筑路720米,实际每天比原计划多筑路80米,这样在规定完成全路修筑任务的前3天,就只剩下1160米未筑,这条路全长多少千米?_____
A: 8.10B: 10.12C: 11.16D: 13.50
参考答案: C 本题解释:C解析:现在每天筑路:720+80=800(米)规定时间内,多筑的路是:(720+80)×3-1160=2400-1160=1240(米)求出规定的时间是1240÷80=15.5(天),这条路的全长是720×15.5=11160(米)。故本题选C。
95、某年10月份有四个星期四,五个星期三,这年的10月8日是星期_____。
A: 一B: 二C: 三D: 四
参考答案: A 本题解释:【答案】A。解析:根据题意,10月份的31号肯定是星期三,以此推断10月10号也是星期三,那么10月8日应该是星期一。
96、小明前三次数学测验的平均分数是88分,要想平均分数达到90分以上,他第四次测验至少要达到_____
A: 98分B: 96分C: 94分D: 92分
参考答案: B 本题解释:【解析】B。分,该数值可以根据以上式子判定尾数为6,选择B。
97、一本100多页的书,被人撕掉了4张.剩下的页码总和为8037。则该书最多有多少页_____
A: 134B: 136C: 138D: 140
参考答案: A 本题解释:【答案】A。解析:撕掉四张纸的页码数之和是偶数,由剩下页码数是奇数可知总的页码数是奇数,排除B、D。若为C,则撕掉的页码数之和是138×(138+1)÷2—8037=1554>138×8,矛盾。A项符合题意。
98、一间长250米、宽10米、高4米的仓库放置了1000个棱长为1米的正方体箱子,剩余的空间为_____立方米。 B: 1500C: 5000D: 9000
参考答案: D 本题解释:【答案】D。解析:仓库的容量为250×10×4=10000立方米,1000个棱长为1米的正方体箱子体积为1000×1×1×1=1000立方米,则剩余空间为10000-1000=9000平方米,故正确答案为D。
99、某人在公共汽车上发现一个小偷向相反方向步行,10秒钟后他下车去追小偷,如果他的速度比小偷快一倍,比汽车慢,则此人追上小偷需要_____。
A: 20秒B: 50秒C: 95秒D: 110秒
参考答案: D 本题解释:D【解析】设某人速度为v,则小偷速为0.5v,汽车速为5v,10秒钟内,与小偷相差(0.5+5)v×10=55v,追求时速差为0.5v,所以所需时间为110秒。
100、四人进行篮球传接球练习,要求每人接到球后再传给别人,开始由甲发球,并作为第一次传球。若第五次传球后,球又回到甲手中,则共有传球方式多少种:_____
A: 60;B: 65;C: 70;D: 75;
参考答案: A 本题解释:【答案解析】:选A,球第一次与第五次传到甲手来源:www.91exam.org中的传法有:C(1,3)×C(1,2)×C(1,2)×C(1,2)×C(1,1)=3×2×2×2×1=24,球第二次与第五次传到甲手中的传法有:C(1,3)×C(1,1)×C(1,3)×C(1,2)×C(1,1)=3×1×3×2×1=18,球第三次与第五次传到甲手中的传法有:C(1,3)×C(1,2)×C(1,1)×C(1,3)×C(1,1)=3×2×1×3×1=18,24+18+18=60种,具体而言:分三步:(1)在传球的过程中,甲没接到球,到第五次才回到甲手中,那有3×2×2×2=24种,第一次传球,甲可以传给其他3个人,第二次传球,不能传给自己,甲也没接到球,那就是只能传给其他2个人,同理,第三次传球和第四次也一样,有乘法原理得一共是3×2×2×2=24种。(2)因为有甲发球的,所以所以接下来考虑只能是第二次或第三次才有可能回到甲手中,并且第五次球才又回到甲手中。当第二次回到甲手中,而第五次又回到甲手中,故第四次是不能到甲的,只能分给其他2个人,同理可得3×1×3×2=18种。(3)同理,当第三次球回到甲手中,同理可得3×3×1×2=18种。最后可得24+18+18=60种