时间:2016-06-16 21:54:29
1、某超市购进一批商品,按照能获得50%的利润的定价,结果只销售了70%,为尽快将余下的商品销售出去,超市决定打折出售,这样所获得的全部利润是原来能获得利润的82%,问余下的商品几折出售?_____
A: 6.5折B: 7折 C: 7.5折D: 8折
参考答案: D 本题解释:D。设成本100,定价150,则原来一件利润是50,再设折扣X,共有Y件商品,所以50Y*0.7+(150X-100)0.3Y=50Y*0.82,整理得X=0.8,选D。
2、有关部门要连续审核30个科研课题方案,如果要求每天安排审核的课题个数互不相等且不为零,则审核完这些课题最多需要_____。
A: 7天B: 8天C: 9天D: 10天
参考答案: A 本题解释:【答案解析】1+2+3+4+5+6+7=28,再加一个2等于30,但因为是要互不相等,所以8天的情况和更多的情况都不符合,只能是7天,也就是1+2+3+4+5+6+9的情况,选A。
3、有41个学生要坐船过河,渡口处只有一只能载4人的小船(无船工),他们要全部渡过河去,至少要使用这只小船渡河多少次?_____
A: 23B: 24C: 27D: 26
参考答案: C 本题解释:【答案】C。解析:套用公式,过河次数=(41-1)/(4-1)=13.33,过河次数为整数,13<13.33<14,要使所有人都过河,只能取14。所求次数为单程次数,来回总共14×2-1=27次(最后一次过河不再返回)。故正确答案为C。公式:过河问题中每次过河都需要有一个人将船划回来,而最后一次过河不再需要划回来。N个人过河,船最多载M人,则过河次数为(N-1)/(M-1)。过河次数指单程次数,注意最后一次过河不需要人划回来,总次数=单程次数×2-1。
4、把自然数按由小到大的顺序排列起来组成第一串数:1、2、3、……、9、10、11、12、……把这串数中两位以上的数全部隔开成一位数字,组成第二串数:1、2、……、9、1、0、1、1、1、2、1、3、……。则第一串数中100的个位数字0在第二串数中是第几个数?_____
A: 188B: 198C: 192D: 202
参考答案: C 本题解释:正确答案是C考点多位数问题解析根据题意,第一串数一位数(1—9)有9个,可分成9个数字;两位数(10—99)有99-10+1=90个,可分成90×2=180个数,则第一串数中100的个位数0在第二串数字中的位置为9+180+3=192,故正确答案为C。
5、一列长90米的火车以每秒30米的速度匀速通过一座长1200米的桥,所需时间为_____。
A: 37秒B: 40秒C: 43秒D: 46秒
参考答案: C 本题解释:C【精析】火车过桥实际走过的距离等于火车的长度加上桥的长度,因此所需时间=(1200+90)÷30=43(秒)。
6、有甲、乙、丙三辆公交车于上午8:00同时从公交总站出发,三辆车再次回到公交总站所用的时间分别为40分钟、25分钟和50分钟,假设这三辆公交车中途不休息,请问它们下次同时到达公交总站将会是几点?_____
A: 11点整B: 11点20分C: 11点40分D: 12点整
参考答案: B 本题解释:正确答案是B考点周期问题解析三辆公交车下次同时到达公交总站相隔的时间应是三辆车周期的最小公倍数为200分钟,计3小时20分钟,因此三辆车下次同时到达公交总站的时间为11点20分钟。因此正确答案为B。标签最小公倍数
7、两枚导弹相距41620公里,处于同一弹道上彼此相向而行。其中一枚以每小时38000公里的速度行驶。另一枚以时速22000公里的速度行驶。问它们在碰撞前1分钟时相距多远?_____
A: 4.162公里B: 41.62公里C: 1000公里D: 60000公里
参考答案: C 本题解释:正确答案是C考点行程问题解析38000+22000=60000(公里/小时)=1000(公里/分钟),可见两个相对飞行的导弹以每分钟1000公里的速度靠近。那么,当它们在最后一分钟的时候,两者相距1000公里,故正确答案为C。
8、_____
A: 3B: 4C: 5D: 6
参考答案: C 本题解释:正确答案是C考点计算问题解析
9、已知A股票上涨了1.32元,相当于该股票原价的21%,B股票上涨3.68元.也相当于原价的21%,则两种股票原价相差_____
A: 11.24元B: 8.58元C: 10.32元D: 10.58元
参考答案: A 本题解释:正确答案:A解析:增长的数值除以增长的百分比3.68÷21%-1.32÷21%≈11。故答案为A。
10、只装有动力桨的船,其单靠人工划船顺流而下的速度是水速的3倍。现该船靠人工划动从A地顺流到达B地,原路返回时只开足动力桨行驶,用时比来时少2/5。问船在静水中开足动力浆行驶的速度是人工划船速度的多少倍?_____
A: 2B: 3C: 4D: 5
参考答案: B 本题解释:正确答案是B考点行程问题解析设水速是1,则顺水速度为3,人工划船静水速度=3-1=2,顺水时间:逆水时间=11-2/5)=5:3,则顺水速度:逆水速度=3:5,所以逆水速度为5,动力浆静水速度=5+1=6,比例为6:2=3:1,故正确答案为B。标签赋值思想
11、银行存款年利率为2.5%,应纳利息税20%,原存1万元1年期,实际利息不再是250元,为保持这一利息收入,应将同期存款增加到_____元。
A: 15000B: 20000C: 12500D: 30000
参考答案: C 本题解释:C。【解析】令存款为x,为保持利息不变,250=x×2.5%×(1-20%)=>x=12500。
12、有一1500米的环形跑道,甲乙两人同时同地出发,若同方向跑50分钟后,甲比乙多绕整一圈;若以相反方向跑2分钟后二人相遇。则乙的速度为_____。
A: 330米/分钟B: 360米/分钟C: 375米/分钟D: 390米/分钟
参考答案: B 本题解释:【答案】B。解析:同向跑时,50分钟后甲与乙第一次相遇,则甲与乙的速度差为1500÷50=30米/分钟;反向跑时,2分钟后甲乙二人第一次相遇,则甲与乙的速度和为1500÷2=750米/分钟,故乙的速度为(750-30)÷2=360米/分钟。
13、一个小于200的数,它除以11余8,除以13余10,那么这个数是多少?_____
A: 118B: 140C: 153D: 162
参考答案: B 本题解释:正确答案是B考点余数与同余问题解析解析1:可直接将4个选项带入,只有B符合题干要求。解析2:根据同余问题口诀”余同取余,和同加和,差同减差,公倍数做周期”,此处符合差同情形,也即除数与余数的差相同,而公倍数为11×13=143,因此被除数的表达式可写为143n-3,符合此表达式的仅B选项。标签直接代入
14、妈妈给了红红一些钱去买贺年卡,有甲、乙、丙三种贺年卡,甲种卡每张0.50元,丙种卡每张1.20元。用这些钱买甲种卡要比买乙种卡多买8张,买乙种卡要比买丙种卡多买6张。妈妈给了红红多少钱?_____
A: 8元B: 10元C: 12元D: 15元
参考答案: C 本题解释:C解析:盈亏总额为0.5×8+1.2×6=11.2(元),单价相差1.2-0.5=0.7(元),所以共可买乙种卡11.2÷0.7=16(张)。妈妈给了红红0.5×(16+8)=12(元)。故本题正确答案为C。
15、一个长方体的长、宽、高恰好是三个连续自然数,并且它的体积数值等于它的所有棱长之和的2倍,那么这个长方体的表面积为多少?_____
A: 74B: 148C: 150D: 154
参考答案: B 本题解释:参考答案:B题目详解:假设长方体的长、宽、高分别是,
,则:体积数值为:
,棱长之和的2倍为:
,联立有:
,解得
即长方体的长、宽、高分别为6,5,4,可见长方体的表面积为:
。所以,选B。考查点:数量关系>数学运算>几何问题>立体几何问题>表面积与体积问题
16、2台大型收割机和4台小型收割机在一天内可收完全部小麦的3/10,8台大型收割机和10台小型收割机在一天内可收完全部小麦,如果单独用大型收割机和单独用小型收割机进行比较,要在一天内收完小麦,小型收割机要比大型收割机多用多少台?_____
A: 8B: 10C: 18D: 20
参考答案: C 本题解释:正确答案是C考点工程问题解析假定全部小麦为1。假设大型收割机与小型收割机的效率分别为X、Y,则可得:2X+4Y=3/10,8X+10Y=1,解得X=1/12,Y=1/30。因此单独用大型收割机收完需要12台,单独用小型收割机收完需要30太,相差18台。故正确答案为C。
17、某企业有甲、乙、丙三个仓库,且都在一条直线上,之间分别相距1千米、3千米,三个仓库里面分别存放货物5吨、4吨、2吨。如果把所有的货物集中到一个仓库,每吨货物每千米运费是90元,请问把货物放在哪个仓库最省钱?_____
A: 甲B: 乙C: 丙D: 甲或乙
参考答案: B 本题解释:正确答案是B考点统筹规划问题解析总运费等于所运货物的吨数乘以所运的距离,要使总运费最少,就要使所运货物的吨数最少且所运的距离最短。因为丙仓库的货物最少,显然丙地的货物应向“甲、乙”方向运。假设丙的两吨货物运到乙仓库,此时乙仓库的货物是6吨大于甲仓库的货物吨数,所以应该把甲仓库的5吨运往乙仓库,因此选择乙仓库最省钱。故正确答案为B。注释:“非闭合运输集中”问题核心法则:在非闭合的路径上(包括线形、树形等,不包括环形)有多个“点”,每个点之间通过“路”来连通,每个“点”上有一定的货物,需要用优化的方法把货物集中到一个“点”上的时候,通过以下方式判断货物流通的方向:判断每条“路”的两侧的货物总重量,在这条“路”上一定是从轻的一侧流向重的一侧。
18、若干个相同的立方体摆在一起,前、后、左、右的视图都是问这堆立方体最少有多少个?_____
A: 4B: 6C: 8D: 10
参考答案: A 本题解释:正确答案是A考点几何问题解析从最少的情况考虑,如下图所示即可实现。右图为俯视情况,其中阴影表示放置有立方体的位。故正确答案为A。
19、 的个位数是几?_____
A: 3B: 5C: 7D: 9
参考答案: C 本题解释:正确答案是C考点多位数问题解析标签尾数法
20、(2007.国考)小明和小强参加同一次考试,如果小明答对的题目占题目总数的3/4,小强答对了27道题,他们两人都答对的题目占题目总数的2/3,那么两人都没有答对的题目共有:_____
A: 3道B: 4道C: 5道D: 6道
参考答案: D 本题解释:参考答案题目详解:解法一:代入排除法设一共有x道题,都没答对的有y道,则有
,化简有
由于x和y都是整数,(27+y)必是11的倍数,将选项代入,只有D项符合。解法二:数的整除性质:根据“小明答对的题目占题目总数的3/4”可知,题目总数能被4整除;根据“两人都答对的题目占题目总数的2/3”可知,题目总数能被3整除。所以题目总数能被3×4=12整除。由于两人都答对的题目一定不超过27道,故题目总数应在(27,27÷2/3)范围内。所以题目总数为36(能被12整除).故两人都没有答对的题目有36-(36×3/4+27-36×2/3)=6道。因此,选D。考查点:数量关系>数学运算>计算问题之算式计算>不定方程问题>二元一次不定方程
21、时钟指示2点15分,它的时针和分针所形成的锐角是多少度?_____
A: 45度B: 30度C: 25度50分D: 22度30分
参考答案: D 本题解释:正确答案是D考点钟表问题解析时针每60分钟转30度,所以每分钟转0.5度,2点15分的时候时针从2点转过了15×0.5=7.5度,所以时针和分针的夹角为30-7.5=22.5度,即22度30分,故正确答案为D。
22、某种灯泡出厂售价为6.2元,采用新的生产技术后可节约12%的成本,若售价不变,利润可比原来增长50%。问该产品最初的成本为多少元?_____
A: 3.8B: 4.5C: 5.0D: 5.5
参考答案: C 本题解释:【答案】C。解析:设原来的成本为x元,那么6.2一0.88x=(1+0.5)(6.2一x),解得x=5。故选C。
23、某企业发奖金是根据利润提成的。利润低于或等于10万元时可提成10%,低于或等于20万元时,高于10万元的部分按7.5%提成;高于20万元时,高于20万元的部分按5%提成。当利润额为40万元时,应发放奖金多少万元?_____
A: 2B: 2.75C: 3D: 4.5
参考答案: B 本题解释:【答案】B。解析:40万元的利润,10万元按10%计算利润,10万元按7.5%计算利润,再20万元按5%计算利润。共10×10%+10×7.5%+20×5%=2.75万元。
24、分数4/9、17/35、101/203、3/7、151/301中最大的一个是_____。
A: 4/9B: 17/35C: 101/203D: 151/301
参考答案: D 本题解释:D【解析】首先目测可以知道3/7、17/35和101/203都小于1/2,而4/9和151/301都大于1/2,所以只要比较二者的大小就可以,通过计算,151/301大,所以选择D。
25、共有100个人参加某公司的招聘考试,考试内容共有5道题,1-5题分别有80人,92人,86人,78人,和74人答对,答对了3道和3道以上的人员能通过考试,请问至少有多少人能通过考试?_____
A: 30B: 55C: 70D: 74
参考答案: C 本题解释:正确答案是C考点容斥原理问题解析1-5题分别错了20、8、14、22、26人,加起来为90。逆向考虑,为了让更多的人不及格,这90道错题分配的时候应该尽量的3道分给一个人,即可保证一个人不及格,所以一共可以分给最多30个人,让这30个人不及格,所以及格的至少会有70人。故正确答案为C。标签三集合容斥原理公式逆向考虑
26、有一只青蛙在井底,每天上爬10米,又下滑6米,这口井深20米,这只青蛙爬出井口至少需要多少天?_____
A: 2B: 3C: 4D: 5
参考答案: C 本题解释:正确答案是C考点行程问题解析根据题意,青蛙每天爬10-6=4米,井深为20米,从第一天到第三天共爬4+4+4=12(米),到第四天还有20-12=8(米),因为青蛙是先上爬10米,再下滑6米,所以青蛙在开始下滑之前能爬上剩余的8米,故青蛙第四天能爬出井,故正确答案为C选项。
27、现有50名学生都做物理、化学实验,如果物理实验做正确的有40人,化学实验做正确的有31人,两种实验都做错的有4人,则两种实验都做对的有_____。
A: 27人B: 25人C: 19人D: 10
参考答案: B 本题解释:【答案解析】容斥问题,40+31-X=50-4,所以X=25,选B。
28、用a、b、c三种不同型号的客车送一批会议代表到火车站,用6辆a型车,5趟可以送完;用5辆a型车和10辆b型车,3趟可以送完;用3辆b型车和8辆c型车,4趟可以送完。问先由3辆a型车和6辆b型车各送4趟,剩下的代表还要由2辆c型车送几趟?_____
A: 3趟B: 4趟C: 5趟D: 6趟
参考答案: B 本题解释:【答案】B。解析:方程法解题,主要求出a=2b,3b=2c,然后列方程求得选择B选项。
29、某地劳动部门租用甲、乙两个教室开展农村实用人才培训。两教室均有5排座位,甲教室每排可坐10人,乙教室每排可坐9人。两教室当月共举办该培训27次,每次培训均座无虚席,当月培训1290人次。问甲教室当月共举办了多少次这项培训?_____
A: 8B: 10C: 12D: 15
参考答案: D 本题解释:正确答案是D考点和差倍比问题解析乙教室可坐9人,可知乙培训过的人数含有因子3,而总的培训人数1290也含有因子3,因此甲教室培训过的人数也必然含有3因子。而甲教室可坐50人,因此要使甲教室培训过的人数也含有3因子,则其举办次数必然含有3因子,因此只有C、D符合。将C选项代入,可知此时乙教室举办过15次培训,其总人数的尾数为5,而甲教室培训的总人数尾数总是为0,因此甲、乙教室的培训人数尾数为5,不符合要求。故正确答案为D。秒杀技由题意,甲教室每次培训50人,乙教室每次培训45,假设甲乙的次数分别为X、Y,则可得50X+45Y=1290,观察等式可知45Y的尾数必然为0,因此Y必然为偶数,从而X为奇数,仅D符合。故正确答案为D。
30、某商店有126箱苹果,每箱至少有120个苹果,至多有144个苹果。现将苹果个数相同的箱子算作一类。设其中箱子数最多的一类有个箱子,则
的最小值为多少?_____
A: 4B: 5C: 6D: 7
参考答案: C 本题解释:参考答案:C题目详解:解法一:将苹果个数相同的箱子算成一类,那么每一类都可以看成一个“抽屉”。这样可以构造出144-120+1=25个抽屉,又由于:126÷25=5…1,由抽屉原理2可以得到,。解法二:每箱数目是120—144,共有25种可能。又因126=5×25+1,故至少有5+1=6(个)装相同苹果数的箱子,即
最小为6.考查点:数量关系>数学运算>抽屉原理问题>抽屉原理2
31、1/3,4/13,14/39,12/41以上这四个数中,最大的数为最小的数的几倍?_____
A: 7/6倍B: 14/13倍C: 41/36倍D: 287/234倍
参考答案: D 本题解释:正确答案是D考点计算问题解析标签尾数法
32、一小型货车站最大容量为50辆车,现有30辆车,已知每小时驶出8辆,驶入10辆,则多少小时车站容量饱和?_____
A: 8B: 10C: 12D: 14
参考答案: B 本题解释:B[解析]每小时驶出8辆,驶入10辆的结果就是每小时车站增加两辆车,以此类推,10个小时车站增加20辆,容量饱和。
33、(2008山西)若干学校联合进行团体表演,参演学生组成一个方阵,已知方阵由外到内第二层有104人,则该方阵共有学生_____人。
A: 625B: 841C: 1024D: 1369
参考答案: B 本题解释:参考答案:B题目详解:根据方阵公式:最外层人数可得:由外到内第二层每排的学生数:
个;最外一层每排有学生有:最外层每边元素数=内层每边元素数+2:
个;所以该方阵共有学生有:
个。所以,选B考查点:数量关系>数学运算>特殊情境问题>方阵问题>实心方阵问题
34、从装满1000克浓度为50%的酒精瓶中倒出200克酒精,再倒入蒸馏水将瓶加满。这样反复三次后,瓶中的酒精浓度是多少?_____
A: 22.5%B: 24.4%C: 25.6%D: 27.5%
参考答案: C 本题解释:正确答案是C考点浓度问题解析解析1:先道出溶液再倒入清水,套用公式,浓度=,所以答案为C。
解析2:由题意:每次操作后,酒精浓度变为原来的(1000-200)÷1000=0.8,故反复三次后浓度变为50%×0.8×0.8×0.8=25.6%。标签公式应用
35、在某企业,40%的员工有至少3年的工龄,16个员工有至少8年的工龄。如果90%的员工的工龄不足8年,则工龄至少3年但不足8年的员工有_____人。
A: 48B: 64C: 80D: 144
参考答案: A 本题解释:正确答案是A考点和差倍比问题解析通过题干可知,工龄大于8年的占(1-90%)=10%,而这部分有16人,则共有工人160人,同时,通过题干可知,工龄大于3年小于8年的员工为至少3年的员工数减去至少8年的员工数,为160×40%-16=48人,故正确答案为A。
36、李森在一次村委会选举中,需2/3的选票才能当选,当统计完3/5的选票时,他得到的选票数已达到当选票数的3/4,它还需要得到剩下选票的几分之几才能当选?_____
A: 2500B: 3115C: 2225D: 2550
参考答案: C 本题解释:正确答案是D考点倍数约数问题解析75=3×5×5,共6个约数,质因数每多个3则约数多3个,质因数每多个5则约数多2个,所以A=3×3×3×5×5=675,B=3×5×5×5×5=1875,A+B=2550,故正确答案为D。秒杀技由题意可知,A和B均能被3整除,则其和也能被3整除,仅选项D符合,故正确答案为D。
37、某班学生不到50人,在一次考试中,有1/7人得优,1/3人得良,1/2人及格,其余的均不及格,那么不及格的人数是_____。
A: 1B: 2C: 3D: 4
参考答案: A 本题解释:正确答案是A考点倍数约数问题解析通过题干可知,该班级人数应为7、3、2的公倍数,又因为不能超过50人,所以该班人数为7×3×2=42人。那么不及格的人数为42-6-14-21=1。故正确答案为A。标签数字特性
38、有14个纸盒,其中有装1只球的,也有装2只和3只球的。这些球共有25只,装1只球的盒数等于装2只球和3只球的盒数之和。装3只球的盒子有多少个?_____
A: 7B: 5C: 4D: 3
参考答案: C 本题解释: C【解析】设装有3只球的盒子有x个,装有2只球的盒子有y个,则装有1只球的盒子有(x+y)个。由题意可得:x+y+(x+y)=14(x+y)+3x+2y=25故x=4,y=3。
39、一个正方体木块放在桌子上,每一面都有一个数,位于对面两个数的和都等于13,小张能看到顶面和两个侧面,看到的三个数和为18;小李能看到顶面和另外两个侧面,看到的三个数的和为24,那么贴着桌子的这一面的数是多少_____
A: 4B: 5C: 6D: 7
参考答案: B 本题解释:【答案】B。解析:小张、小李二人看到的数加起来一共为2组对面加上2倍的顶面,因此顶面为(18+24-13×2)÷2=8,底面为13-8=5.
40、如图所示,A的面积为36平方米,B的面积为24平方米,A、B之间的落差为5米,现在要将A地的土移到B地,使A、B同样高,B地应升高_____米。
A: 2B: 2.4C: 2.5D: 3
参考答案: D 本题解释:D【解析】图所示,将B面视为水平面,A面所在六面体的体积为36×5=180(立方米),将这180立方米的土平均分布在(A+B)的面上,所得到的高就是B面上升的高度,即180÷(36+24)=3(米),故本题答案为D。
41、刘女士今年48岁,她说:"我有两个女儿,当妹妹长到姐姐现在的年龄时,姐妹俩的年龄之和比我到那时的年龄还大2岁。"问姐姐今年多少岁?_____
A: 24B: 23C: 25D: 不确定
参考答案: C 本题解释:正确答案是C考点年龄问题解析
42、某企业有甲、乙、丙三个仓库,且都在一条直线上,之间分别相距1千米、3千米,三个仓库里面分别存放货物5吨、4吨、2吨。如果把所有的货物集中到一个仓库,每吨货物每千米运费是90元,请问把货物放在哪个仓库最省钱?_____
A: 甲B: 乙C: 丙D: 甲或乙
参考答案: B 本题解释:B解析:此题遵循“小往大处靠”原则,先把2吨的货物移动到4吨那,这样就相当于有了6吨货物,然后在把5吨的货物也移动到6吨,综上所述,运到乙仓库最省钱。
43、某公司去年有员工830人,今年男员工人数比去年减少6%,女员工人数比去年增加5%,员工总数比去年增加3人,问今年男员工有多少人?_____
A: 329B: 350C: 371D: 504
参考答案: A 本题解释:正确答案是A考点和差倍比问题解析设去年男员工X人,女员工Y人,由题意知:X+Y=830,5%Y-6%X=3,解得X=350。今年男员工减少了,所以人数小于350,只有A符合条件,故正确答案为A。秒杀技由题知,今年男员工数是去年的94%,所以今年男员工数可被94%整除,根据选项,只有A符合。故正确答案为A。标签数字特性
44、有一个灌溉用的中转水池,一直开着进水管往里灌水,一段时间后,用2台抽水机排水,则用40分钟能排完;如果用4台同样的抽水机排水,则用16分钟排完。问如果计划用10分钟将水排完,需要多少台抽水机?_____
A: 5台B: 6台C: 7台D: 8台
参考答案: B 本题解释:正确答案是B考点牛吃草问题解析设未用抽水机时中转水池共有水N,每分钟进水Y,根据题意可得N=(2-Y)×40,N=(4-Y)×16,解得Y=2/3,N=160/3。因此10分钟将水排完,需要抽水机160/3÷10+2/3=6台,故正确答案为B。公式:在牛吃草模型背景下,公式为N=(牛数-Y)×天数,其中N表示原有草量的存量,以牛数与天数的乘积来衡量;Y表示专门吃新增加草量所需要的牛数。标签公式应用
45、有一串数:1,3,8,22,60,164,448,……其中第一个数是1,第二个数是3,从第三个数起,每个数恰好是前两个数之和的2倍。那么在这串数中,第2000个数除以9的余数是_____
A: 1B: 2C: 3D: 4
参考答案: B 本题解释:B。【解析】本题属于组合数列。奇数项:-1,4,14,29,();偶数项:1,8,20,37,两两做差:5,10,157,12,17两数列均为二级等差数列,于是得到所求项为20+29=49。所以选择B选项。
46、一个质数的3倍与另一个质数的2倍之和等于20,那么这两个质数的和是_____。
A: 8 B: 9 C: 7 D: 6
参考答案: B 本题解释:【解析】B。 设这两个质数分别为x、y,则3x+2y=20。2y和20都是偶数,则3x也是偶数,即x为偶数。又因为x同时是质数,则x=2,y=7。两质数之和x+y=9。故选B。
47、去超市购买商品,如果购买9件甲商品,5件乙商品和1件丙商品一共需要72元。如果购买13件甲商品,7件乙商品和1件丙商品一共需要86元。若甲、乙、丙三种商品各买2件,共需要多少钱?_____
A: 88B: 66C: 58D: 44
参考答案: A 本题解释:正确答案是A考点不定方程问题解析解析1:设甲、乙、丙的价格分别为A、B、C元,根据题意,9A+5B+C=72,13A+7B+C=86,这是一个不定方程,可设A=0,容易解出B=7,C=37,则2(A+B+C)=88(元),故正确答案为A。解析2:设甲、乙、丙的价格分别为A、B、C元,根据题意,9A+5B+C=72①,13A+7B+C=86②,两个方程相减得2A+B=7③,①+②-11③=B+2C=81,故(2A+B)+(B+2C)=7+81=2A+2B+2C=88(元),故正确答案为A。
48、甲、乙两人分别从圆形跑道直径A、B两端同时出发相向而行,在离A地60米的地方相遇,两人继续前进,再一次相遇在离A地80米处。这个圆形跑道的长度为多少?_____
A: 260米B: 400米C: 800米D: 1600米
参考答案: A 本题解释:参考答案:A题目详解:第一次相遇时,两人走过的距离之和为半个圆周,此时甲走了60米;从第一次相遇到第二次相遇的D点,两人走过的距离之和为一个圆,因此甲又走了120米。因此跑道的总长度为:(米),所以,选A。考查点:数量关系>数学运算>行程问题>相遇问题>环线相遇问题>环线多次相遇问题
49、一桶农药,加入一定量的水稀释后,浓度为15%;再加入同样多的水稀释,农药的浓度变为12%,若第三次再加入同样多的水,农药的浓度将变为多少?_____
A: 8%B: 10%C: 11%D: 13%
参考答案: B 本题解释:B。【解析】设δ加水稀释前农药量为x,?次所加水量为a,所求浓度为y%,则(x+a)15%=(x+2a)12%=(x+3a)y%,解得y%=10%。
50、有浓度为4%的盐水若干克,蒸发了一些水分后浓度变成l0%,再加入300克4%的盐水后,变为浓度6.4%的盐水,则最初的盐水是_____
A: 200克B: 300克C: 400克D: 500克
参考答案: D 本题解释: 【解析】D。可以采用带入法,将选项代入题干中,发现只有当最初的盐水是500克的时候才能满足要求,或者利用倒推方法解题。
51、有关部门要连续审核30个科研课题方案,如果要求每天安排审核的课题个数互不相等且不为零,则审核完这些课题最多需要_____。
A: 7天B: 8天C: 9天D: 10天
参考答案: A 本题解释:参考答案:A题目详解:每天审核的课题应尽可能少,才能增加审核天数。假设第1天审核1个,则第2天最少审核2个,……依此类推,则审核完这些课题天数最多的方案应为每天审核1,2,3,4,5,6,9或1,2,3,4,5,7,8。显然所需天数都为7天。所以,选A。考查点:数量关系>数学运算>抽屉原理问题>抽屉原理1
52、_____
A: AB: BC: CD: D
参考答案: D 本题解释:正确答案是D考点计算问题解析解析1:标签完全平方和差公式立方和差公式韦达定理
53、如图,街道XYZ在Y处拐弯,XY=1125米,YZ=855米,在街道一侧等距装路灯,要求X,Y,Z处各装一盏路灯,这条街道最少要安装多少盏路灯?_____
A: 9月18日B: 10月14日C: 11月14日D: 12月18日
参考答案: C 本题解释:正确答案是C考点周期问题解析A、B、C、D四人的周期分别为6、12、18、30,因此周期的最小公倍数为180。从5月18日向后数180天,180天约为6个月,因此该时间必然落在11月,故正确答案为C。
54、一瓶挥发性药物,每天挥发5毫升,15天后挥发了全部的75%,假如每天挥发的速度不变,余下的几天能挥发完?_____
A: 4B: 5C: 6D: 7
参考答案: B 本题解释:B【解析】5×15÷75%=100ml这瓶药物共100ml,100-5×15=25ml,剩下25ml,25÷5=5天。
55、如下图所示,梯形ABCD,AD∥BC,DE⊥BC,现在假设AD、BC的长度都减少10%,DE的长度增加10%,则新梯形的面积与原梯形的面积相比,会怎样变化?_____
A: 不变B: 减少1%C: 增加10%D: 减少10%
参考答案: B 本题解释:正确答案是B考点几何问题解析
56、一个圆能把平面分成两个区域,两个圆可以把平面分成四个区域,问四个圆最多可能把平面分成多少个区域?_____
A: 14B: 13C: 16D: 15
参考答案: A 本题解释:正确答案是A考点几何问题解析标签画图分析
57、18名游泳运动员,有8名参加仰泳,有10名参加蛙泳,有12名参加自由泳,有4名既参加仰泳又参加蛙泳,有6名既参加蛙泳又参加自由泳,有5名既参加仰泳又参加自由泳,有2名这3个项目都参加。这18名游泳运动员中,只参加1个项目的有多少名?_____
A: 5B: 6C: 7D: 4
参考答案: B 本题解释: 【解析】B。利用文氏图可以迅速准确地求得答案。注意本题目的陷阱,18名运动员并不是都参加了项目。由图可知;只参加一个项目的有l+2=3=6名。
58、五年级有122名学生参加语文、数学考试,每人至少有一门功课取得优秀成绩,其中语文成绩优秀的有65人,数学成绩优秀的有87人。语文、数学都优秀的有多少人?_____
A: 30B: 35C: 57D: 65
参考答案: A 本题解释:参考答案:A题目详解:此题是典型的两个集合的容斥问题,由题意设:A={{语文成绩优秀的人}};B={{数学成绩优秀的人}};因此,={{五年级参加语文、数学考试的人}};
={{语文和数学都优秀的人}}由两个集合的容斥原理可得:
=
=
所以,选A。考查点:数量关系>数学运算>容斥原理问题>两个集合容斥关系
59、(2009江苏)如下图,将一个表面积为36平方米的正方体等分成两个长方体,再将这两个长方体拼成一个大长方体,则大长方体的表面积是_____。
A: 24平方米B: 30平方米C: 36平方米D: 42平方米
参考答案: D 本题解释:参考答案题目详解:解法一:已知原来正方体每个面的面积都是6平方米,这个过程中,先产生了一个截面,新增了两个平面的面积,即增加了12平方米;原来在右边的那个面在接触过程中被遮住了,不再是表面,即减少了一个平面的面积,即减少了6平方米。综上,大长方体的表面积为
平方米。所以,选D。解法二:同样体积的图形当中,越接近于球,表面积越小,所以正方体变成长方体之后,表面积肯定会增加,由此可以直接判断D为正确答案。考查点:数量关系>数学运算>几何问题>立体几何问题>表面积与体积问题
60、x为正数,表示不超过x的质数的个数,如<5.1>=3,即不超过5.1的质数有2、3、5共3个。那么<<19>+<93>+<4>×<1>×<8>的值是:_____
A: 15B: 12C: 11D: 10
参考答案: C 本题解释:参考答案:C题目详解:根据题意,分步计算:<19>为不超过19的质数,即2、3、5、7、11、13、17、19共8个。<93>为不超过93的质数,共24个,而<1>为不超过1的质数,为O个,那么<4>×<1>×<8>=0;则原式=<<19>+<93>>=<8+24>=<32>=11。所以,选C。考查点:数量关系>数学运算>计算问题之算式计算>定义新运算问题
61、商店里有六箱货物,分别重15、16、18、19、20、31千克,两个顾客买走了其中五箱,已知一个顾客买的货物重量是另一个顾客的2倍。商店剩下的一箱货物重多少千克_____
A: 16B: 18C: 19D: 20
参考答案: D 本题解释: 【解析】D。由题可知卖出的五箱货物一定能被3整除,六箱货物的总重为119千克,只有D项能使五箱货物被3整除,故选D。
62、从0,1,2,7,9五个数字中任选四个不重复的数字,组成的最大四位数和最小四位数的差是_____。
A: 8442B: 8694 C: 8740D: 9694
参考答案: B 本题解释:答案:B。由题意可得:最大的四位数为9721,最小的四位数为1027,故两者的差是9721-1027=8694。
63、(2009黑龙江)某项工作,甲单独做要18小时完成,乙要24小时完成,丙要30小时才能完成。现按甲、乙、丙的顺序轮班做,每人工作一小时后换班。问当该项工作完成时,乙共做了多长时间?_____
A: 7小时44分B: 7小时58分C: 8小时D: 9小时10分
参考答案: A 本题解释:参考答案:A题目详解:解法一:根据题意,设工作总量为1,则:甲每小时完成:,乙每小时完成:
,丙每小时完成:
,所以三个人各工作一小时可完成:
。
,所以三人各工作7小时后,还剩下
没有完成,由于
,所以乙工作的时间为:
小时,即为7小时44分钟。因此,选A。解法二:18、24、30的最小公倍数是360,根据题意,有:甲、乙、丙三人各工作一小时可完成:
甲再工作一小时还剩:
所以乙的工作时间为:7小时44分钟考查点:数量关系>数学运算>工程问题>合作完工问题
64、小王练习射击,每次10发。练了若干次之后,小王准备再打一次。如果这次小王打48环,那么平均每次打56环。如果最后这次打68环,那么平均每次打60环。小王共练习了多少次_____
A: 4B: 5C: 6D: 7
参考答案: B 本题解释:【答案】B。解析:平均数问题,(68-48)÷(60-56)=5。
65、甲、乙、丙三名运动员囊括了全部比赛项目的前三名,他们的总分分别是8、7和17分,甲得了一个第一名,已知各个比赛项目分数相同,且第一名的得分不低于二、三名得分的和,那么比赛共有多少个项目?_____
A: 3B: 4C: 5D: 6
参考答案: B 本题解释:【答案解析】全部比赛前三名的总分为8+7+17=32分,每个项目前三名的分数和至少是3+2+1=6分,所以每个项目前三名的分数和应该是32的大于6的约数,只能是8、16、32;如果是16或32,因为甲得了一个第一,所以甲的得分应大于8,不合题意,所以每个项目前三名的分数和是8分,共有项目32÷8=4个。
66、(51/76)÷(204/138)÷(184/228)的值与下列哪个数最接近?_____
A: 0.45B: 0.5C: 0.56D: 0.6
参考答案: C 本题解释:正确答案是C考点计算问题解析解析一:原式可化为51/76×138/204×228/184,化简后得(138×3)/(184×4)=0.5625,C最接近。解析二:(51/76)÷(204/138)÷(184/228)=3×17/(4×19)×23/34×57/46=9/16=0.5625,C最接近。故正确答案为C。
67、下图是由5个相同的小长方形拼成的大长方形,大长方形的周长是88厘米,问大长方形的面积是多少平方厘米?_____
A: 472平方厘米B: 476平方厘米C: 480平方厘米D: 484平方厘米
参考答案: C 本题解释:正确答案是C考点几何问题解析通过观察大长方形的上下两边,可见小长方形的长宽比为3:2,则设小长方形的长宽分别为3y、2y,根据题意得,3y×4+2y×5=88,解得y=4,因此大长方形长为:3y×2=24,宽为:3y+2y=20,则大长方形的面积为:24×20=480,故选择C选项。秒杀技由题意给出”5个相同的小长方形”,因此大长方形的面积是小长方形的5倍,由此可知面积应能被5整除,故答案为C。标签数字特性
68、小刚骑自行车从8路汽车起点出发,沿8路车的行驶路线前进。当他骑了1650米时,一辆8路公共汽车从起点站出发,每分钟行驶450米。这辆汽车在行驶过程中每行5分钟停靠一站,停靠时间为1分钟。已知小刚骑车的速度是汽车行驶速度的,这辆汽车出发后多长时间追上小刚?_____
A: 15分钟B: 16分钟C: 17分钟D: 18分钟
参考答案: C 本题解释:【解析】C。如果不休息的话汽车要1650÷(450-450×)=11分钟,11÷5=2……1,则汽车在追上小刚前休息了2分钟,而这两分钟内,小刚又走了450××2=600米,汽车又要用600÷(450-450×)=4分钟,故一共用了11+4+2=17分钟。
69、甲乙两个工厂的平均技术人员比例为45%,其中甲厂的人数比乙厂多12.5%,技术人员的人数比乙厂的多25%,非技术人员人数比乙厂多6人。甲乙两厂共有多少人?_____
A: 680B: 840C: 960D: 1020
参考答案: A 本题解释:正确答案是A考点和差倍比问题解析由题干中"甲厂人数比乙厂多12.5%"可知甲、乙两厂总人数之比为9:8,则可假设甲厂总人数有9n,乙厂总人数有8n,甲乙总人数为17n,故总人数一定能被17整除,排除选项B、C;在A和D之间选择,直接代入A选项,则有680=17n,n=40,则甲厂共360人,乙厂共320人,两厂的技术人员总数为680×45%=306人,甲厂技术人员有170人,非技术人员为190人,乙厂有技术人员136人,非技术人员184人,甲乙两厂的非技术人员相差190-184=6人,满足题意,验证成立。故正确答案为A。标签直接代入数字特性
70、四个相邻质数之积为17 017,他们的和为_____。
A: 48B: 52C: 61D: 72
参考答案: A 本题解释:【答案】A。解析:l7017=l7×l3×11×7,它们的和为48。
71、(2009-北京社会)甲、乙、丙三个滑冰运动员在一起练习滑冰,已知甲滑一圈的时间,乙、丙分别可以滑一又四分之一圈和一又六分之一圈,若甲、乙、丙同时从起点出发,则甲滑多少圈后三人再次在起点相遇?_____
A: 8B: 10C: 12D: 14
参考答案: C 本题解释:参考答案:C题目详解:根据题意,“三人再次在起点相遇”,则三人滑的圈数必须都为整数;相同时间内,甲、乙、丙滑的圈数之比为:,将其转化为整数比;将他们同时乘以4,6的最小公倍数12,即为12:15:14;则三人分别滑12、15、14圈时再次在起点相遇;因此,选C。考查点:数量关系>数学运算>计算问题之数的性质>公约数与公倍数问题>三个数的最大公约数和最小公倍数
72、甲乙两人相约见面,并约定第一人到达后,等15分钟不见第二人来就可以离去。假设他们都在10点至10点半的任一时间来到见面地点,则两人能见面的概率有多大?_____
A: 37.5%B: 50%C: 62.5%D: 75%
参考答案: D 本题解释:正确答案是D考点概率问题解析本题为几何概率问题。设甲到达的时间为10点x分,乙到达的时间为10点y分,则只有|x-y|≤15,甲乙才能相遇。本题可以采用作图法求解,甲、乙到达约定地点的情况(0≤x≤30,0≤y≤30)如下图,则只有在阴影部分区域甲乙能够相遇,也就是求阴影部分的面积的比例。由图中可以看出,阴影部分占总面积的3/4,即两人能见面的概率为75%。故正确答案为D。标签画图分析
73、科考队员在冰面上钻孔获取样本,测量不同空心之间的距离,获得的部分数据分别为1米、3米、6米、12米、24米、48米。问科考队员至少钻了多少个孔?_____
A: 4B: 5C: 6D: 7
参考答案: D 本题解释:正确答案是D考点几何问题解析所测距离组成一个数列1、3、6、12、24、48,易知该数列中任一项均大于其前面所有项之和,故这6条线段不可能组成封闭回路,即6条线段最少7个端点,至少钻7个孔。故正确答案为D。
74、_____ B: -1C: -2D: 3
参考答案: B 本题解释:正确答案是B考点计算问题解析f(2+x)=f(2-x),则f(4)=f(0),16+4a+3=3,解得a=-4,故有f(2)=4-4×2+3=-1。故正确答案为B。标签赋值思想
75、有一列车从甲地到乙地,如果是每小时行100千米,上午11点到达,如果每小时行80千米是下午一点到达,则该车的出发时间是_____
A: 上午7点 B: 上午6点 C: 凌晨4点 D: 凌晨3点
参考答案: D 本题解释: 【解析】D。设出发时间是T,那么100×(11-T)=80(13-T),解得T=3,即凌晨3点 。
76、有一批书要打包后邮寄,要求每包内所装书的册数都相同,用这批书的7/12打了14个包还多35本,余下的书连同第一次多的零头刚好又打了11包,这批书共有多少本?_____
A: 1000B: 1310C: 1500D: 1820
参考答案: C 本题解释: C 解析: 由已知条件,全部书的7/12打14包还多35本,可知全部书的1/12打2包还多5本,即全部书的5/12打10包还多25本,而余下的是5/12加35本打11包。所以,(35+25)÷(11-10)=60本,1包是60本,这批书共有(14+11)×60=1500(本)。故本题正确答案为C。
77、_____
A: AB: BC: CD: D
参考答案: D 本题解释:正确答案是D考点其他解析故正确答案为D。
78、(浙江2009-52)小孙的口袋里有四颗糖,一颗巧克力味的,一颗果味的,两颗牛奶味的。小孙任意从口袋里取出两颗糖,他看了看后说,其中一颗是牛奶味的。问小孙取出的另一颗糖也是牛奶味的可能性(概率)是多少?_____
A: 1/3B: 1/4C: 1/5D: 1/6
参考答案: C 本题解释:参考答案:C题目详解:依题意:在“已知取出的两颗糖中油一颗是牛奶味”的情况下,另一颗糖有两种情况:(1)非牛奶味:;(1)牛奶味:
;求的是在这两种情况下,出现(2)情况的概率:
;所以,选C。考查点:数量关系>数学运算>概率问题>条件概率
79、一个人到书店购买了一本书和一本杂志,在付钱时,他把书的定价中的个位上的数字和十位上的看反了,准备付21元取货。售货员说:"您应该付39元才对。"请问书比杂志贵多少钱?_____
A: 20B: 21C: 23D: 24
参考答案: C 本题解释:正确答案是C考点多位数问题解析设书价为10A+B,看反后相差18元,则10A+B-18=10B+A,解得A-B=2,即十位数与个位数相差2,因为书和杂志的总价个位39元,所以书价只能为31,杂志为39-31=8元,因此书比杂志贵31-8=23(元),故正确答案为C。
80、小王和小李一起到加油站给汽车加油,小王每次加50升93#汽油,小李每次加200元93#汽油,如果汽油价格有升有降,那么给汽车所加汽油的平均价格较低的是_____。
A: 小王B: 小李C: 一样的D: 无法比较
参考答案: B 本题解释:正确答案是B考点平均数问题解析
81、一种溶液,蒸发掉一定量的水后,溶液的浓度为10%;再蒸发掉同样多的水后,溶液的浓度变为12%;第三次蒸发掉同样多的水后,溶液的浓度将变为多少?_____
A: 14%B: 17%C: 16%D: 15%
参考答案: D 本题解释:正确答案是D考点浓度问题解析在蒸发的过程中,溶液的量发生变化,但其中溶质保持不变,因此将溶质作为解题突破口,给溶质赋值。为方便后面的计算,设其溶质为60,则可知其浓度在10%时,溶液量为600,其浓度在12%时,溶液量为500。这说明在变化过程中蒸发掉了水为100。因此第三次蒸发同样多的水后,溶液还剩400,故其浓度为15%。故正确答案为D。标签赋值思想
82、外语学校有英语、法语、日语教师共27人,其中只能教英语的有8人,只能教日语的有6人,能教英、日语的有5人,能教法、日语的有3人,能教英、法语的有4人,三种都能教的有2人,则只能教法语的有_____。
A: 4人B: 5人C: 6人D: 7人
参考答案: B 本题解释:正确答案是B考点容斥原理问题解析因此正确答案为B。标签画图分析
83、三条边均为正整数,且最长边为11的三角形有_____个。
A: 21B: 23C: 25D: 36
参考答案: D 本题解释:参考答案题目详解:分情况考虑:根据“三角形两边之和大于第三边”:最短边为1,那么另一边为11,一种;最短边2,另一边可以是11、10,二种;最短边为3,另一边可以是9、10、11,三种;……最短边6,另一边可以是6、7、8、9、10、11,六种;最短边7,另一边可以是7、8、9、10、11,五种;最短边8,另一边可以是8、9、10、11,四种;……最短边11,另一边只能是11,一种;计算总共有几种情况:
种。所以,选D。考查点:数量关系>数学运算>几何问题>平面几何问题>周长与面积相关问题
84、某城市共有A、B、C、D、E五个区,A区人口是全市人口的5/17,B区人口是A区人口的2/5,C区人口是D区和E区人口总数的5/8,A区比C区多3万人,全市共有多少万人?_____
A: 20.4B: 30.6C: 34.5D: 44.2
参考答案: D 本题解释:正确答案是D考点和差倍比问题解析由A区人口是全市人口的5/17,将全市人口看做17份,则A区有5份,B区有2份,于是C、D、E三区共有10份,而在此三区中,C区人口是D区和E区人口总数的5/8,也即C区人口是此三区人口总数的5/13,因此C区人口为(5/13×10)份,于是A区比C区多5-50/13=15/13份,此部分人口数为3万人,于是全市共有3÷15/13×17=44.2(万人)。故正确答案为D。标签赋值思想
85、有A、B两种商品,如果A的利润增加20% ,B的利润减少10% ,那么A、B两商品的利润就相同了。问原来A商品的利润是B商品利润的百分之几?_____
A: 80%B: 70%C: 85%D: 75%
参考答案: D 本题解释:D
86、一只小鸟离开在树枝上的鸟巢,向北飞了20米,之后又向东飞了20米,然后又向上飞了20米。最后,它沿着到鸟巢的直线飞回了家。请问小鸟飞行的总长度与下列哪个最接近?_____
A: 34米B: 80米C: 94米D: 100米
参考答案: C 本题解释:C。
87、某草莓种植基地利用恒温库储存草莓准备反季节销售。据测算,每储存1斤草莓可增加收入2.5元。小王去年收获草莓5吨,当时市场价为每斤3元,如果都利用恒温库储存,小王的草莓收入可以达到_____。
A: 27500元B: 32500元C: 45000元D: 55000元
参考答案: D 本题解释:正确答案是D考点和差倍比问题解析本题需要注意单位的换算,5吨=5000千克=10000斤,因此小王的收入可以达到:(3+2.5)×10000=55000元,故正确答案为D。
88、(100+99)(100-99)+(99+98)(99-98)+(98+97)(98-97)+……+(2+1)(2-1)的值是多少?_____
A: 10100B: 9999C: 10000D: 5050
参考答案: B 本题解释:正确答案是B考点计算问题解析秒杀技观察加式中的每一项都为奇数,一共99项,故加和为奇数,只有B符合,故正确答案为B。标签平方差公式
89、如图,已知直角梯形ABCD的上底长18厘米,下底长27厘米,高24厘米,三角形ABF、三角形ADE和四边形AECF’面积相等。三角形AEF的面积为多少平方厘米?_____
A: 165B: 132C: 160D: 156
参考答案: D 本题解释:参考答案题目详解:依题意:
平方厘米;且
平方厘米;故
厘米;则
厘米;
方厘米;故
厘米,
厘米,
平方厘米;
平方厘米;所以,选D。考查点:数量关系>数学运算>几何问题>平面几何问题>周长与面积相关问题
90、有一筐苹果,甲、乙、丙三人分,甲先拿了一半,乙拿了剩余的一半,丙再拿剩下的1/3,筐里还剩14个苹果。问:这一筐苹果有多少个?_____
A: 56B: 64C: 84D: 90
参考答案: C 本题解释:正确答案是C考点和差倍比问题解析逆向考虑,丙拿剩下的1/3后还剩14个,说明丙拿之前有苹果14÷2/3=21个,则乙拿之前有21÷1/2=42个,甲拿之前有42÷1/2=84个,故正确答案为C。标签逆向考虑
91、一只装有动力桨的船,其单独靠人工划船顺流而下的速度是水流速度的3倍,现在该船靠人工划动从a地到顺流到达b地,原路返回时只开足动力桨行驶,用时比来时少 ,问船在静水中开足动力桨行驶的速度是人工划桨的速度的多少倍? _____
A: 2 B: 3 C: 4 D: 5
参考答案: B 本题解释:【答案】B【解析】假设水流速度为“1”,a地到b地的距离为15。则人工划船的顺流速度为3,人工划船的静水速度为3-1=2。人工划船从a地顺流到b地时间为15÷3=5,故动力桨从b地逆流到a地时间为5×(1- )=3,故动力桨的逆流速度为15÷3=5,动力桨的静水速度为5+1=6。因此,船在静水中开足动力桨行驶的速度是人工划桨的速度的6÷2=3倍。
92、若干学校联合进行团体操表演,参演学生组成一个方阵,已知方阵由外到内第二层有104人,则该方阵共有学生_____人。
A: 625B: 841C: 1024D: 1369
参考答案: B 本题解释:【答案】B。解析:根据方阵公式:最外层人数=4×最外层每边人数﹣4可知:由外到内第二层每排的学生数=(104+4)÷4=27个;最外一层每排有学生=27+2=27+2=29个;所以该方阵共有学生:29×29=841个,故正确答案为B。
93、服装厂的工人每人每天可以生产4件上衣或7条裤子,一件上衣和一条裤子为一套服装。现有66名工人生产,每天最多能生产多少套服装?_____
A: 168B: 188C: 218D: 246
参考答案: A 本题解释:正确答案是A考点鸡兔同笼问题解析由题意,每个工人每天可以生产的上衣和裤子的比例为4:7,要使生产的服装套数更多,则最终生产的上衣和裤子数量要相同,所以生产上衣和裤子的工人比例为7:4,有66名工人,则生产上衣的工人数量为66×7/11=42,生产裤子的工人数量为66×4/11=24,生产服装数量最多等于42×4=168。故正确答案为A。
94、有甲、乙、丙、丁四个数,已知甲的8%为9,乙的9%为10,丙的10%为11,丁的11%为12,则甲、乙、丙、丁四个数中最小的数是_____。
A: 甲B: 乙C: 丙D: 丁
参考答案: D 本题解释:正确答案是D考点计算问题解析根据题意,甲=9÷0.08=100÷8+100,乙=10÷0.09=100÷9+100,丙=11÷0.10=100÷10+100,丁=12÷0.11=100÷11+100,不难发现丁数最小,故正确答案为D。
95、某服装厂生产出来的一批衬衫大号和小号各占一半。其中25%是白色的,75%是蓝色的。如果这批衬衫共有100件,其中大号白色衬衫有10件,小号蓝色衬衫有多少件?_____
A: 15B: 25C: 35D: 40
参考答案: C 本题解释:正确答案是C考点和差倍比问题解析由题意,大号衬衫有50件,小号衬衫有50件,白衬衫有25件,蓝衬衫有75件。现有大号白衬衫10件,意味着小号白衬衫为25-10=15(件),则小号蓝衬衫为50-15=35(件)。故正确答案为C。
96、小明给住在五个国家的五位朋友分别写一封信,这些信都装错了信封的情况共有多少种?_____
A: 32B: 44C: 64D: 120
参考答案: B 本题解释:参考答案:B题目详解:套用“装错信封”问题的公式:;即D5=44;所以,选B;考查点:数量关系>数学运算>排列组合问题>常规排列组合问题
97、科考队员在冰面上钻孔获取样本,测量不同空心之间的距离,获得的部分数据分别为1米、3米、6米、12米、24米、48米。问科考队员至少钻了多少个孔?_____
A: 4B: 5C: 6D: 7
参考答案: D 本题解释:正确答案是D考点几何问题解析所测距离组成一个数列1、3、6、12、24、48,易知该数列中任一项均大于其前面所有项之和,故这6条线段不可能组成封闭回路,即6条线段最少7个端点,至少钻7个孔。故正确答案为D。
98、在浓度为 的酒精中加入10千克水,浓度变为
,再加入L千克纯酒精,浓度变为
,则L为多少千克?_____
A: 8B: 11.7C: 14.6D: 16.4
参考答案: B 本题解释:参考答案:B题目详解:应用十字交叉法:根据题意;第一次混合相当于浓度为与
的溶液混合:
所以75%的酒精与水的比例为
;水10千克,
的酒精8.75千克。混合后共18.75千克。第二次混合,相当于浓度为
与
的溶液混合:
所以
的酒精与纯酒精的比例为
,即18.75:
,
千克;所以,选B。考查点:数量关系>数学运算>浓度问题>不同溶液混合
99、A大学的小李和B大学的小孙分别从自己学校同时出发,不断往返于A、B两校之间。现已知小李的速度为85米/分,小孙的速度为105米/分,且经过12分钟后两人第二次相遇。问A,B两校相距多少米?_____
A: 1140米B: 980米C: 840米D: 760米
参考答案: D 本题解释:易知到第二次相遇时,两人合起来走过的距离恰为A、B两校距离的3倍,因此A、B两校相距(85+105)×12÷3=760(米)。故选D。
100、一个三位数,各位上的数的和是15,百位上的数与个位上的数的差是5,如颠倒百位与个位上的数的位置,则所成的新数比原数的3倍少39。求这个三位数_____
A: 196B: 348C: 267D: 429
参考答案: C 本题解释: 【解析】C。代入验证,A项符合题意。故选C。