时间:2016-06-04 06:53:04
1、有一个上世纪80年代出生的人,如果他能活到80岁,那么有一年他的年龄的平方数正好等于那一年的年份。问此人生于哪一年_____
A: 1980年 B: 1983年 C: 1986年 D: 1989年
参考答案: A 本题解释:【解析】A。1980~2069中只有一个平方数2025(即),由“有一年他的年龄的平方数正好等于那一年的年份”可知满足条件的那一年是2025年,此时他的年龄为45岁,因此此人生于2025-45=1980(年),符合“上世纪80年代出生”这个要求。
2、某单位订阅了30份学习材料发放给3个部门,每个部门至少发放9份材料。问一共有多少种不同的发放方法?_____
A: 7B: 9C: 10D: 12
参考答案: C 本题解释:正确答案是C考点排列组合问题解析因此正确答案为C。
3、某水果店经销一种销售成本为每千克40元的水果。据市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克。水果店想在月销售成本不超过10000元的情况下,使得月销售利润最大,则定价应为每千克多少元?_____
A: 65B: 70C: 75D: 80
参考答案: C 本题解释:当销售单价定为每千克2元时,月销售量为:500—10×(χ一50)=1000一1Oχ,每千克的销售利润为(χ一40)元,所以月销售利润为:Y=(χ一40)(1000一1Oχ)=一1Oχ2+1400χ-40000=一10(χ一70)2+9000,因为月销售成本不超过10000元,所以40×(1000一1Oχ)≤10000,解得χ≥75。因为二次函数Y=一10(χ一70)2+9000的对称轴为χ=70,χ=75时离对称轴最近,此时Y取最大值,为8750。故本题正确答案为C。
4、某市居民用电实行分段式收费,以人为单位设定了相同的基准用电度数,家庭人均用电量超过基准用电度数的部分按照基准电费的两倍收取电费。某月,A家庭5口人用电250度,电费175元;B家庭3口人用电320度,电费275元。该市居民每人的基准用电为_____度。
A: 50B: 35C: 30D: 25
参考答案: C 本题解释:正确答案是C考点分段计算问题解析设每人基准用电为m,基准电费为n,则可得方程组如下:n×5m+2n×(250-5m)=175,n×3m+2n×(320-3m)=275,联立解得m=30。故正确答案为C。
5、某单位招录了10名新员工,按其应聘成绩排名1到10,并用10个连续的四位自然数依次作为他们的工号,凑巧的是每个人的工号都能被他们的成绩排名整除,问排名第三的员工工号所有数字之和是多少_____。
A: 12B: 9C: 15D: 18
参考答案: A 本题解释:正确答案是A考点多位数问题解析假设10个工号依次为N+1、N+2、……、N+10,由题意,N+A能够被A整除(A为1、2、……、10),则N能够被A整除。于是N能够被1、2、……、10整除,因此N至少为1、2、……、10的最小公倍数,则在四位数上N最小为2520,可知此时第三位工号为2523,其数字和为12。故正确答案为A。秒杀技由题意第三位的工号加上6后为第九位的工号,因此能被9整除,也即第三位的工号数字之和加上6后能够被9整除,在四个选项中仅A符合。标签数字特性
6、一件商品相继两次分别按折扣率为10%和20%进行折扣,已知折扣后的售价为540元,那么折扣前的售价为_____。
A: 600元B: 680元C: 720元D: 750元
参考答案: D 本题解释:正确答案是D考点和差倍比问题解析由题意可知折扣前售价为:540÷(1-20%)÷(1-10%)=750元,故正确答案为D。
7、把12棵同样的松树和6棵同样的柏树种植在道路两侧,每侧种植9棵,要求每侧的柏树数量相等且不相邻,且道路起点和终点处两侧种植的都必须是松树。问有多少种不同的种植方法:_____
A: 36B: 50C: 100D: 400
参考答案: C 本题解释:正确答案是C,解析:根据题意,道路起点和终点处两侧种植的都必须是松树,故只需要安排松树的位置。每侧的柏树数量相等且不相邻,则每侧3棵柏树,且每侧共9棵树,除去道路起点终点,则松树每侧4棵。用“隔板法”,将3棵松树插在4棵松树的间隙,每侧有
排法,两侧有
方法。故正确答案为C。考点:排列组合问题
8、某医院有一氧气罐匀速漏气,该氧气罐充满后同时供40人吸氧,60分钟后氧气耗尽,再次充满该氧气罐同时供60个人吸氧,则45分钟后氧气耗尽。问如果该氧气罐充满后无人吸氧,氧气耗尽需要多长时间?_____
A: 1.5小时B: 2小时C: 2.5小时D: 3小时
参考答案: D 本题解释:【答案】D。解析:这是一个变形的牛吃草问题。设原有氧气为M,漏气速度为V,则可得(40+V)×60=(60+V)×45=M,解得V=20,M=3600,如果没人吸氧,则可得耗尽的时间为3600÷20=180分钟,即3小时。故正确答案为D。
9、某住户安装了分时电表,白天电价0.55元,夜间电价是0.3元。计划是7月份用电400度,电费不超过160元,那么白天用电不超过多少度?_____
A: 150B: 160C: 170D: 180
参考答案: B 本题解释:参考答案:B题目详解:设白天用电x度:则有0.55x+(400-x)×0.3≤160,解得x≤160。所以,选B。考查点:数量关系>数学运算>计算问题之算式计算>最值问题
10、有甲、乙两只盒子,甲盒装有2个黑球、4个红球,乙盒装有4个黑球、3个红球,若从甲、乙两盒中各任取两球交换后,甲盒中恰有4个红球的概率为多少?_____
A: B:
C:
D:
参考答案: D 本题解释:参考答案题目详解:事件“甲盒中恰有4个红球”发生:说明从甲盒任取两球的结果与从乙盒任取两球的结果相同;甲盒任取两个球:有
种情形,其中“2黑”的情形有
种,“1黑1红”的情形有
种,“2红”的情形有
种;乙盒任取两个球:有
种情形,其中“2黑”的情形有
种,“1黑1红”的情形有
种,“2红”的情形有
种。所以,“2黑”交换:
种;“1黑1红”交换:
种;“2红”交换:
种;因此,甲盒中恰有4个红球的概率是:
;所以,选D。考查点:数量关系>数学运算>概率问题>条件概率
11、十几个小朋友围成一圈,按顺时针方向一圈一圈地循环报数。如果报1和报100的是同一人,那么共有多少个小朋友?_____
A: 10B: 11C: 13D: 15
参考答案: B 本题解释:参考答案:B题目详解:代入法,,符合题意考查点:数量关系>数学运算>计算问题之数的性质>余数问题>一个被除数,多个除数>基本形式>中国剩余定理
12、一列长90米的火车以每秒30米的速度匀速通过一座长1200米的桥,所需时间_____秒。
A: 37B: 40C: 43D: 46
参考答案: C 本题解释:正确答案是C考点行程问题解析所需时间为(1200+90)÷30=43秒。故正确答案为C。
13、某村村民经过集体投票民主选举村干部,5位村干部候选人中得票最高者将当选。经统计,本次选举有效选票一共395票,且当选者的得票数比其他4位候选人的平均得票数要多60票,则这名当选者一共获得_____票。
A: 62B: 67C: 122D: 127
参考答案: D 本题解释:正确答案是D考点和差倍比问题解析假定其他四位候选人的平均票数为M,则根据题意可得4M+M+60=395,解得M=67,因此当选者一共获得67+60=127票。故正确答案为D。
14、某商场在节日期间实行促销,规定凡是购买200元以上的商品可以优惠20%,那么用300元钱在该商场最多可买下价值多少元的商品?_____
A: 375B: 350C: 340D: 320
参考答案: A 本题解释:A。购买200元以上可以优惠20%,即购买200元以上的商品可以打八折。
15、一件工作甲先做6小时,乙接着做12小时可以完成。甲先做8小时,乙接着做6小时也可以完成。如果甲先做3小时后,再由乙接着做,还需要多少小时完成? _____
A: 16B: 18C: 21D: 24
参考答案: C 本题解释:C【解析】设甲、乙两人每小时的工作量x、y,可列方程6x+12y=18x+6y=1 解得x=110y=130,甲先做了110×3,工作还剩1-310=710,故乙还需要710÷130=21 小时。故选C。
16、用直线切割一个有限平面,后一条直线与此前每条直线都要产生新的交点,第1条直线将平面分成2块,第2条直线将平面分成4块。第3条直线将平面分成7块,按此规律将平面分为22块需_____。
A: 7条直线B: 8条直线C: 9条直线D: 6条直线
参考答案: D 本题解释:正确答案是D考点几何问题解析根据题意可知,设n为直线,S为分成的平面数,n=1时,S=2;n=2时,S=4;n=3时,S=7;n=4时,S=11;n=5时,S=16;n=6时,S=22。所以6条线可将平面分成22部分。故答案为D。
17、两只蜗牛由于耐不住阳光照射,从井顶走向井底,白天往下走,一只蜗牛一个白天能走20厘米,另一只只能走15厘米;黑夜里往下滑,两只蜗牛下滑速度相同,结果一只蜗牛5昼夜到达井底,另一只却恰好用了6昼夜。问井深是多少厘米?_____
A: 150B: 180C: 200D: 250
参考答案: A 本题解释:A【解析】两只蜗牛白天路程差为20×5-15×6=10(厘米)。因为最终到达井底,所以蜗牛黑夜下滑的速度为每夜10÷(6-5)=10(厘米)。井深为(20+10)×5=150(厘米)。因此,正确答案为A。
18、足球比赛的记分规则为:胜一场得3分;平一场得1分;负一场得0分。一个队打了14场,负5场,共得19分,那么这个队胜了几场?_____
A: 3 B: 4 C: 5 D: 6
参考答案: C 本题解释: 【解析】C。设这个队胜了X场,可得方程3X+9-X=19,得X=5,所以此队胜了5场。
19、某厂生产一批商标,形状为等边三角形或等腰三角形。已知这批商标边长为2cm或4cm,那么这批商标的周长可能是_____。
A: 6cm12cmB: 6cm8cm12cmC: 6cm10cm12cmD: 6cm8cm10cm12cm
参考答案: C 本题解释:正确答案是C考点几何问题解析三角形的两边之和必须大于第三边,因此三边可能有三种情况:(2,2,2)、(2,4,4)、(4,4,4),周长为分别为6cm、10cm、12cm,故正确答案为C。
20、袋中有7只白球,3只红球,白球中有4只木球,3只塑料球;红球中有2只木球,1只塑料球。现从袋中任取1球,并且每只球被取到的可能性相同。若已知取到的球是白球,问它是木球的概率是多少?_____
A: 4/7B: 7/25C: 2/25D: 2/5
参考答案: A 本题解释:参考答案:A题目详解:取到白球中的木球的概率:;取到白球的概率为:
;根据条件概率公式:
;所以,选A。考查点:数量关系>数学运算>概率问题>条件概率
21、某班有60名学生,在第一次测验中有32人得满分,在第二次测验中有27人得满分。如果两次测验中都没有得满分的学生有17人,那么两次测验中都获得满分的人数是多少?_____
A: 13人B: 14人C: 15人D: 16人
参考答案: D 本题解释:正确答案是D考点容斥原理问题解析本题注意按照得满分得到两个类,进行容斥原理分析。设第一次测验得满分为事件A,第二次测验得满分为事件B,则两次都得满分为A∩B,将其设为x人,得过满分为A∪B。根据公式A∪B=A+B-A∩B可得:60-17=32+27-x解得x=16,因此两次测验中都获得满分的人数是16人,故正确答案为D。
22、某个月有5个星期三,并且第三个星期六是18号。请问以下不能确定的答案是_____
A: 这个月有31天B: 这个月最后一个星期日不是28号C: 这个月没有5个星期六D: 这个月有可能是闰年的2月份
参考答案: A
23、在距离10千米的两城之间架设电线杆,若每隔50米立一个电线杆,则需要有_____个电线杆。
A: 15B: 201C: 100D: 250
参考答案: B 本题解释:B 【解析】所需数量为长度数除以间隔数加1。
24、甲、乙、丙三个班向希望工程捐赠图书,已知甲班有1人捐6册,有2人各捐7册,其余各捐11册,乙班有1人捐6册,有3人各捐8册,其余各捐10册,丙班有2人捐4册,6人各捐7册,其余人各捐9册。已知甲班捐书总数比乙班多28册,乙班比丙班多101册,各班捐书总数在400~550册之间。那么,甲、乙、丙三个班各有多少人?_____
A: 48、50、53B: 49、51、53C: 51、53、49D: 49、53、51
参考答案: C 本题解释:正确答案是C考点和差倍比问题解析甲班比丙班多28+101=129册,则甲班总数在529—550之间;甲班为6+2×7+11n=20+11n,多捐2册就能被11整除,所以甲班总数只能是548(550-2)或537,因此丙班是419或408;丙班为2×4+6×7+9m=50+9m,多捐4册就能被9整除。因此丙班捐了419本,则丙班有(419-50)÷9+8=49人,故正确答案为C。
25、为了浇灌一个半径为10米的花坛,园艺师要在花坛里布置若干个旋转喷头,但库房里只有浇灌半径为5米的喷头,问花坛里至少要布置几个这样的喷头才能保证每个角落都能浇灌到?_____
A: 4B: 7C: 6D: 9
参考答案: B 本题解释:正确答案是B考点几何问题解析注意到对一个圆而言,圆弧是最外层,因此在浇灌时首先要保证整个圆弧能够被覆盖到。一个小圆只能覆盖一段圆弧,由于每个小圆的直径为10,也即一个小圆覆盖圆弧对应的弦最长为10,而大圆的半径为10,所以每个小圆至多盖住圆心角为60°所对应的弧长。因此想盖住整个圆圈,至少需要六个小圆,并且当且仅当这六个小圆以大圆的内接正六边形各边中点为圆心进行覆盖。此时大圆的圆心处尚未被覆盖,还需要一个小圆才能完成覆盖。如图所示,故正确答案为B。标签画图分析
26、王家村西瓜大丰收后,全村男女老少分四个组品尝西瓜,且每组人正好一样,小伙子一个人吃1个,姑娘两个人吃1个,老人三个人吃1个,小孩四个人吃1个,一共吃了200个西瓜,问王家村品尝西瓜的共有_____
A: 368人B: 384人C: 392人D: 412人
参考答案: B 本题解释: 【解析】B。
27、小明前三次数学测验的平均分数是88分,要想平均分数达到90分以上,他第四次测验至少要达到_____
A: 98分B: 96分C: 94分D: 92分
参考答案: B 本题解释: 【解析】B。分,该数值可以根据以上式子判定尾数为6,选择B。
28、一个班有50名学生,他们的名字都是由2个字或3个字组成的。将他们平均分为两组之后,两组的学生名字字数之差为10。此时两组学生中名字字数为2的学生数量之差为_____。
A: 5B: 8C: 10D: 12
参考答案: C 本题解释:正确答案是C考点不定方程问题解析由题意可知,两组学生名字字数相差10,两边人数相同,即其中一组比另一组字数为3的人数多10人,则字数为2的人数少10人。故正确答案为C。
29、甲乙两个工厂的平均技术人员比例为45%,其中甲厂的人数比乙厂多12.5%,技术人员的人数比乙厂的多25%,非技术人员人数比乙厂多6人。甲乙两厂共有多少人?_____
A: 680B: 840C: 960D: 1020
参考答案: A 本题解释:正确答案是A考点和差倍比问题解析由题干中"甲厂人数比乙厂多12.5%"可知甲、乙两厂总人数之比为9:8,则可假设甲厂总人数有9n,乙厂总人数有8n,甲乙总人数为17n,故总人数一定能被17整除,排除选项B、C;在A和D之间选择,直接代入A选项,则有680=17n,n=40,则甲厂共360人,乙厂共320人,两厂的技术人员总数为680×45%=306人,甲厂技术人员有170人,非技术人员为190人,乙厂有技术人员136人,非技术人员184人,甲乙两厂的非技术人员相差190-184=6人,满足题意,验证成立。故正确答案为A。标签直接代入数字特性
30、甲从A地步行到B地,出发1小时40分钟后,乙骑自行车也从同地出发,骑了10公里时追到甲。于是,甲改骑乙的自行车前进,共经5小时到达B地,这恰是甲步行全程所需时间的一半。问骑自行车的速度是多少公里/小时?_____
A: 12B: 10C: 16D: 15
参考答案: A 本题解释:正确答案是A考点行程问题解析根据已知,10公里的路程骑车比步行省1小时40分(100分钟)。甲骑车后比全程步行省了5小时(前段路程是步行,没有节省),也就是300分钟,说明甲后来骑车了3×10=30公里。从A到B的路程总共是10+30=40公里。全程骑车共需要300-100=200分钟=10/3小时,所以骑车速度=40/(10/3)=12公里/小时,故正确答案为A。
31、3颗气象卫星与地心距离相等,并可同时覆盖全球地表,现假设地球半径为R,则3颗卫星距地球最短距离为_____。
A: RB: 2RC: R/2D: 2R/3
参考答案: A 本题解释:正确答案是A考点几何问题解析故正确答案为A。
32、某医院有一氧气罐匀速漏气,该氧气罐充满后同时供40人吸氧,60分钟后氧气耗尽,再次充满该氧气罐同时供60个人吸氧,则45分钟后氧气耗尽。问如果该氧气罐充满后无人吸氧,氧气耗尽需要多长时间?_____
A: 1.5小时B: 2小时C: 2.5小时D: 3小时
参考答案: D 本题解释:正确答案是D考点牛吃草问题解析这是一个变形的牛吃草问题。设原有氧气为M,漏气速度为V,则可得(40+V)×60=(60+V)×45=M,解得V=20,M=3600,如果没人吸氧,则可得耗尽的时间为3600÷20=180分钟,即3小时。故正确答案为D。
33、_____
A: AB: BC: CD: D
参考答案: A 本题解释:正确答案是A考点几何问题解析
34、某公司甲、乙两个营业部共有50人,其中32人为男性。已知甲营业部的男女比例为5:3,乙营业部的男女比例为2:1,问甲营业部有多少名女职员?_____
A: 18B: 16C: 12D: 9
参考答案: C 本题解释:正确答案是C考点和差倍比问题解析设甲营业部有3X名女职员,乙营业部有Y名女职员,则有5X+2Y=32;32+3X+Y=50,解得X=4,Y=6,故甲营业部有3×4=12名女职员,故正确答案为C。秒杀技有题意可知,两个营业部共有50-32=18名女职员,排除A。根据“乙营业部的男女比例为2:1”可知,乙营业部的男职员为偶数,由于男职员的总人数为偶数,则甲营业部的男职员人数同样为偶数。根据“已知甲营业部的男女比例为5:3”,甲营业部的女职员人数能同时被2和3整除,排除B、D,故正确答案为C。
35、某单位职工24人中,有女性11人,已婚的有16人。在婚的16人中有女性6人。问这个单位的未婚男性有多少人?_____
A: 1B: 3C: 9D: 12
参考答案: B 本题解释:答案:B【解析】男性人数为:24-11=13,已婚男性为l6-6=10(人),因此,未婚男性为13-10=3(人),故选B。
36、某商品按20%的利润定价,然后打八折出售,结果亏损200元。这种商品的成本多少元?_____
A: 4800B: 5000C: 10000D: 8000
参考答案: B 本题解释:正确答案是B考点经济利润问题解析设这种商品的成本为y元,由题意得(1+20%)×80%y-y=﹣200,解得y=5000。故正确答案为B。
37、某工程由小张、小王两人合作刚好可在规定的时间内完成。如果小张的工作效率提高20%,那么两人只需用规定时间的9/10就可完成工程;如果小王的工作效率降低25%,那么两人就需延迟2.5小时完成工程。问规定的时间是多长?_____
A: 20小时B: 24小时C: 26小时D: 30小时
参考答案: A 本题解释:正确答案是A考点工程问题解析由小张工作效率提高后两人完成工程的时间只用原来的9/10,可知提高效率前后的效率之比为9:10,也即两个人合作的效率提高了1/9。假定小张原来的工作效率为5,则现在提高了20%,也即效率增加了1,而增加的1占两人原合作效率的1/9,所以两人合作效率为9,于是可知小王的效率为4。而小王的工作效率降低25%,也即减少1,则两个人的合作效率变为8,前后效率之比为9:8,从而可知完成时间之比为8:9(这说明若规定时间看做8份的话,则现在要用的时间是9份,比原来多出1份),而题目给出延迟2.5小时,于是可知规定时间为2.5×8=20小时。故正确答案为A。
38、四个相邻质数之积为17 017,他们的和为_____。
A: 48B: 52C: 61D: 72
参考答案: A 本题解释:【答案】A。解析:l7017=l7×l3×11×7,它们的和为48。
39、建造一个容积为8立方米,深为2米的长方体无盖水池。如果池底和池壁的造价分别为120元/平米和80元/平米,那么水池的最低总造价是_____元。
A: 1560B: 1660C: 1760D: 1860
参考答案: C 本题解释:正确答案是C考点几何问题解析本题考查几何等量最值性质。容积为8,深为2,则底面积为4,当底面为正方形时,周长最小,此时造价最低,故正方形边长为2,则底面周长为2×4=8,而侧面面积=深度×底面周长=2×8=16,则总造价=120×4+80×16=1760。故正确答案为C。标签几何等量最值性质
40、_____
A: AB: BC: CD: D
参考答案: A 本题解释:正确答案是A考点趣味数学问题解析设空白图案为a,交叉图案为b,钟表图案为c,故可得如下:a+c×3=a×2+b×2,a+b×2=c×2+a×3,解得c=3a,b=4a;则可得a×2+b=6a=2c,故正确答案为A。
41、用2、4、5、7这4个不同数字可以组成24个互不相同的四位数,将它们从小到大排列,那么7254是第多少个数?_____
A: 19B: 20C: 18D: 17
参考答案: B 本题解释:【解析】由已知得每个数字开头的数各有24÷4=6个,从小到大排列,7开头的从第6×3+1=19个开始,易知第19个是7245,第20个是7254。
42、一张考试卷共有10道题,后面的每一道题的分值都比其前面一道题多2分。如果这张考卷的满分为100分,那么第八道题的分值应为多少?_____。
A: 9B: 15C: 14D: 16
参考答案: B 本题解释:正确答案是B考点数列问题解析由题意可知10道题的分值构成等差数列,公差为2。设第一题分值为n,则第十题的分值为n+2×9=n+18,故总分为(n+n+18)÷2×10=100,解得n=1,则第八题分值为1+2×7=15分,故正确答案为B。
43、一个商家要将自己的广告牌装在一条马路的一边,计划每隔4米装一块广告牌。在该马路上,每隔7米都栽种一棵树。已知这段马路长1092米,且一端是树,请问在不砍掉树的情况下,这段马路上可以装_____块广告牌。
A: 234B: 233C: 157D: 156
参考答案: A 本题解释:【答案】A。解析:方法一:如果没有树的话,马路应该可以装1092÷4+1=274(块)广告牌。但因为马路上原来栽有树木,则每隔4×7=28(米)处是树和广告牌重合的地方,不能立广告牌,只需求得广告牌与树木重合之处共有多少,减去即可。至此,本题转化成求在1092米的道路上,间隔28米,可栽种多少树木的问题。套入公式,该条道路上间隔28米处可以种树的棵数1092÷28+1=40。因此,这段马路上能装的广告牌的数量为:274—40=234(块)。方法二:题目可以看做是周期问题。每隔28米可装广告牌数量为28÷4+1=8(块),其中两端都种有树,则28米内可以装广告牌8—2=6(块)。1092米内间隔为28米的路段共有1092÷28=39(个),所以共可装广告牌的数量为6×39=234(块)。
44、规定:符号“△”为选择两数中较大数,“⊙”为选择两数中较小数。例如:3△5=5,3⊙5=3。那么,[(7⊙3)△5]×[5⊙(3△7)]=_____。
A: 15B: 21C: 25D: 49
参考答案: C 本题解释:参考答案:C题目详解:根据题意,分布计算:(7⊙3)=3,(3△7)=7,原式=[3△5]×[5⊙7]=5×5=25。考查点:数量关系>数学运算>计算问题之算式计算>定义新运算问题
45、(江苏2007A类,第14题)杯中原有浓度为 的盐水溶液100ml,重复以下操作2次,加入100ml水,充分配合后,倒出100ml溶液,问杯中盐水溶液的浓度变成了多少?_____
A: B:
C:
D:
参考答案: C 本题解释:参考答案:C题目详解:应用公式法:每次操作后,酒精浓度变为原来的100/100+100=0.5;重复操作2次:;所以,选C。考查点:数量关系>数学运算>浓度问题>不同溶液混合
46、(2008广东,第6题)一项任务甲做要半小时完成,乙做要45分钟完成,两人合作需要多少分钟完成?_____
A: 12B: 15C: 18D: 20
参考答案: C 本题解释:参考答案:C题目详解:根据题意,设工作总量为“1”,则有:甲每分钟完成任务的,乙每分钟完成任务的
,合作完成时间为
。因此,选C。考查点:数量关系>数学运算>工程问题>合作完工问题
47、两个运输队,第一队有320人,第二队有280人,现因任务变动,要求第二队的人数是第一队人数的2倍,需从第一队抽调多少人到第二队?_____
A: 80人B: 100人C: 120人D: 140人
参考答案: C 本题解释:C设需抽调x人,根据题意可得2(320-x)=280+x,解得x=120人。
48、某玩具店同时卖出一个拼装玩具和一架遥控飞机,拼装玩具66元,遥控飞机120元,拼装玩具赚了10%,而遥控飞机亏本20%,则这个商店卖出这两个玩具赚钱或是亏本多少_____
A: 赚了12元B: 赚了24元C: 亏了14元D: 亏了24元
参考答案: D 本题解释:答案:D 解析:根据题意,拼装玩具赚了66÷(1+10%)×10%=6元,遥控飞机亏本120÷(1-20%)×20%=30元,故这个商店卖出这两个玩具亏本30-6=24元。
49、有个班的同学去划船,他们算了一下:如果增加一条船,正好可以坐8人,如果减少一条船,正好可以坐12人,问这个班共有多少同学?_____
A: 44B: 45C: 48D: 50
参考答案: C 本题解释:【答案】C。解析:设有船m只,则根据题意可得:8(m+1)=12(m-1),解得m=5。所以这个班共有同学8×(5+1)=48,故正确答案为C。
50、甲乙两人计划从A地步行去B地,乙早上7:00出发,匀速步行前往,甲因事耽搁,9:00才出发。为了追上乙,甲决定跑步前进,跑步的速度是乙步行速度的2.5倍,但每跑半小时都需要休息半小时,那么甲什么时候才能追上乙?_____
A: 10:20B: 12:10C: 14:30D: 16:10
参考答案: C 本题解释:正确答案是C考点行程问题解析解析1:设乙步行速度为1,则甲跑步速度为2.5,则9:00时甲乙两人之间的距离为2,5小时后,两人相距2-(2.5×0.5-1)×5=0.75,此时,再经过半小时甲刚好追上乙,即共用了5个半小时,在14:30追上,故正确答案为C。解析2:标签直接代入
51、小华每分钟吹一次肥皂泡,每次恰好吹100个。肥皂泡吹出之后,经过一分钟有一半破裂,经过两分钟还有1/20没有破裂,经过两分半钟肥皂泡全部破裂,小华在第20次吹出100个新的肥皂泡的时候,没有破裂的肥皂泡共有多少个?_____
A: 100B: 150C: 155D: 165
参考答案: C 本题解释:正确答案是C考点趣味数学问题解析第20次吹出100个新肥皂泡时,前一分钟(第19分钟)吹的100个肥皂泡还有一半未破,同时,第18分钟吹出100个肥皂泡还余5个未破,因此,小华在第20次吹出100个新的肥皂泡时,没破的共有100+50+5=155个。所以正确答案为C。
52、单独完成某项工作,甲需要16小时,乙需要12小时,如果按照甲、乙、甲、乙……的顺序轮流工作,每次1小时,那么完成这项工作需要多长时间?_____
A: 13小时40分钟B: 13小时45分钟C: 13小时50分钟D: 14小时
参考答案: B 本题解释:答案:B.[解析]本题为工程类题目。设总工程量为48,则甲的效率是3,乙的效率是4,工作12小时后,完成了42。第12小时甲做了3,完成了总工程量45,剩余的3由乙在第十四小时完成。在第十四小时里,乙所用的时间是3/4小时,所以总时间是13.75小时。
53、由1、2、3、4四个数字组成的四位数共有24个,将它们从小到大排列起来,第18个数是以下哪项?_____
A: 3241B: 3421C: 3412D: 3214
参考答案: B 本题解释:正确答案是B考点排列组合问题解析
54、三名工人师傅李群、张强和王充分别加工200个零件,他们同时开始工作,当李群加工200个零件的任务全部完成时,张强才加工了160个,王充还有48个没有加工。当张强加工200个零件的任务全部完成时,王充还有_____个零件没有加工。
A: 15B: 25C: 9D: 10
参考答案: D 本题解释:正确答案是D考点工程问题解析张强加工160个零件时,王充加工了200-48=152个,即张强和王充的效率比为160:152=20:19,设张强加工200个零件时王充加工了x个,根据题意有x:200=19:20,解得x=190,即还有10个没有加工,故正确答案为D。
55、某企业调查用户从网络获取信息的习惯,问卷回收率为90%,调查对象中有179人使用搜索引擎获取信息,146人从官方网站获取信息,246人从社交网站获取信息,同时使用这三种方式的有115人,使用其中两种的有24人,另有52人这三种方式都不使用,问这次调查共发出了多少份问卷:_____
A: 310B: 360C: 390D: 410
参考答案: D 本题解释:正确答案是D,解析:根据题意,收回问卷,则所求为
。故正确答案为D。考点:容斥原理问题
56、张先生向商店订购某种商品80件,每件定价100元。张先生向商店经理说:“如果你肯减价,每件减1元,我就多订购四件。”商店经理算了一下,如果减价5%,由于张先生多订购,仍可得与原来一样多的利润。则这种商品每件的成本是_____。
A: 75元B: 80元C: 85元D: 90元
参考答案: A 本题解释:正确答案是A考点经济利润问题解析设该商品每件成本x元,则未减价前每件利润为(100-x)元,减价5%后每件利润为(95-x)元,订购数量为(80+5×4)件,根据题意有80×(100-x)=(95-x)×(80+5×4),解得x=75,故正确答案为A。
57、有黑色、白色、黄色的筷子各8双,混杂地放在一起,黑暗中想从这些筷子中取出颜色不同的两双筷子,问至少要取多少根才能保证达到要求?_____
A: 4B: 5C: 11D: 19
参考答案: D 本题解释:参考答案题目详解:解法一:考虑最差的情形。先选出一种颜色所有的筷子,然后再取出剩下的两种颜色的筷子各1根,最后再随便取1根即可。因此,至少要取8×2+1×2+1=19根,才能保证达到要求。解法二:1.最不好的取法是一种取了8双,另2种各取了1根,还不能保证有颜色不同的筷子两双;2.如果再取1根,在剩下的2种中,不管从哪一种取1根,都会和已经取出的凑成颜色相同的一双筷子,所以至少要取
根。考查点:数量关系>数学运算>抽屉原理问题>抽屉原理1
58、一个正方体木块放在桌子上,每一面都有一个数,位于相对面两个数的和都等于13,小张能看到顶面和两个侧面,看到的三个数和为18;小李能看到顶面和另外两个侧面,看到的三个数的和为24,那么贴着桌子的这一面的数是多少?_____
A: 4B: 5C: 6D: 7
参考答案: B 本题解释:B。题目给出相对面数字之和为13的条件,则注意将其余条件中出现的相对面合在一起。从这一点出发,可以看出若将小张与小王看到的面合在一起,则实际共看到2个顶面与4个不同的侧面。而四个不同侧面恰为两组对面,也即其数字之和为13×2=26,因此顶面的数字为(18+24—26)÷2=8,于是底面数字为13—8=5。故选B。
59、赵先生34岁,钱女士30岁,一天,他们碰上了赵先生的三个邻居,钱女士问起了他们的年龄,赵先生说:他们三人的年龄各不相同,三人的年龄之积是2450,三人的年龄之和是我俩年龄之和。问三个邻居中年龄最大的是多少岁?_____
A: 42B: 45C: 49D: 50
参考答案: C 本题解释:正确答案是C考点年龄问题解析三个人的年龄之积为2450,对2450做因式分解得2450=2×5×5×7×7,三个人的年龄之和为64。所以试着把5个因数组合成3个不同的整数,使他们的和为64。可知5、10、49符合要求,5+10+49=64,故三个邻居中年龄最大是49岁。故正确答案为C。标签构造调整
60、四人进行篮球传接球练习,要求每人接到球后再传给别人,开始由甲发球,并作为第一次传球。若第五次传球后,球又回到甲手中,则共有传球方式多少种:_____
A: 60;B: 65;C: 70;D: 75;
参考答案: A 本题解释:【答案解析】:选A,球第一次与第五次传到甲手中的传法有:C(1,3)×C(1,2)×C(1,2)×C(1,2)×C(1,1)=3×2×2×2×1=24,球第二次与第五次传到甲手中的传法有:C(1,3)×C(1,1)×C(1,3)×C(1,2)×C(1,1)=3×1×3×2×1=18,球第三次与第五次传到甲手中的传法有:C(1,3)×C(1,2)×C(1,1)×C(1,3)×C(1,1)=3×2×1×3×1=18,24+18+18=60种,具体而言:分三步:(1)在传球的过程中,甲没接到球,到第五次才回到甲手中,那有3×2×2×2=24种,第一次传球,甲可以传给其他3个人,第二次传球,不能传给自己,甲也没接到球,那就是只能传给其他2个人,同理,第三次传球和第四次也一样,有乘法原理得一共是3×2×2×2=24种。(2)因为有甲发球的,所以所以接下来考虑只能是第二次或第三次才有可能回到甲手中,并且第五次球才又回到甲手中。当第二次回到甲手中,而第五次又回到甲手中,故第四次是不能到甲的,只能分给其他2个人,同理可得3×1×3×2=18种。(3)同理,当第三次球回到甲手中,同理可得3×3×1×2=18种。最后可得24+18+18=60种
61、某商店实行促销手段,凡购买价值200元以上的商品可以优惠20%,那么用300元钱在该商店最多可买下价值_____元的商品。
A: 350元B: 384元C: 375元D: 420元
参考答案: C 本题解释:C【解析】300/80%=375元。故选C。
62、某产品售价为67.1元,在采用新技术生产节约10%成本之后,售价不变,利润可比原来翻一番。则该产品最初的成本为_______元。_____
A: 51.2 B: 54.9 C: 61 D: 62.5
参考答案: C 本题解释:【解析】C.本题可采用方程法。设该产品最初的成本为元。由题意得:67.1-0.9x=2(67.1-x),解得x=61.因此该产品最初的成本为61元。
63、某区要从10位候选人中投票选举人大代表,现规定每位选举人必须从这10位中任选两位投票,问至少要有多少位选举人参加投票,才能保证有不少于10位选举人投了相同两位候选人的票?_____
A: 382位B: 406位C: 451位D: 516位
参考答案: B 本题解释:【答案】B。解析:从10位候选人中选2人共有种票,则每种票有9张相同时需要×9=405个
64、商场的自动扶梯以匀速由下往上行驶,两个孩子嫌扶梯走得太慢,于是在行驶的扶梯上,男孩每秒钟向上走2个梯级,女孩每2秒钟向上走3个梯级。结果男孩用40秒钟到达,女孩用50秒钟到达。则当该扶梯静止时,可看到的扶梯梯级有_____。
A: 80级B: 100级C: 120级D: 140级
参考答案: B 本题解释:B。【解析】男孩所走的台阶数为40×2=80,女孩所走的台阶数为50/2×3=75,那么电梯的速度就应该为(80-75)/(50-40)=0.5,电梯所经过的台阶就为40×0.5=20, 电梯经过的台阶加上男孩经过的台阶,就是电梯的台阶数,即100级。
65、五人排队甲在乙前面的排法有几种?_____
A: 60B: 120C: 150D: 180
参考答案: A 本题解释: 答案【A】
66、海岛上信号站的值班员总用红、黄、白三色各三面旗向附近海域出示旗语,在旗杆上纵排挂,可以是一面、二面、三面。那么这样的旗语有多少种?_____
A: 21B: 27C: 33D: 39
参考答案: D 本题解释:参考答案题目详解:如果是一面旗:有3种旗语;如果是二面旗:有
种旗语;如果是三面旗:有
种旗语,因此,一共有
种旗语。所以,选D。考查点:数量关系>数学运算>排列组合问题>常规排列组合问题
67、将5封信投入3个邮筒,不同的投法共有_____。
A: 种B:
种C: 3种D: 15种
参考答案: B 本题解释:参考答案:B题目详解:5封信投入3个信箱:每封信面对3个邮箱,都会有3种选择,且每次投信是独立的,不互相影响;根据排列组合中相乘原理的概念:;所以,选B。考查点:数量关系>数学运算>排列组合问题>常规排列组合问题
68、当含盐为30%的60克盐水蒸发为含盐40%的盐水时,盐水重量是多少克?_____
A: 45B: 50C: 55D: 60
参考答案: A 本题解释:正确答案是A考点浓度问题解析本题关键点在于溶质质量不变,仍为60×30%=18克,则浓度为40%时盐水重量为18÷40%=45克,故正确答案为A。
69、173×173×173-162×162×162=_____
A: 926183B: 936185C: 926187D: 926189
参考答案: D 本题解释:正确答案是D考点计算问题解析根据尾数法,173×173×173尾数为7,162×162×162尾数为8,因此173×173×173-162×162×162尾数为9,故正确答案为D。
70、一客轮从沙市顺流而下开往武汉需要2天,从武汉逆水而上开往沙市需要3天。一木筏从沙市顺流需要_____天到达武汉。
A: 8B: 12C: 15D: 22
参考答案: B 本题解释:B[解析]设水流速度为每天x个长度单位,客轮在静水中的速度为每天y个长度单位,列方程得(y+x)×2=(y-x)×3y=5x沙市到武汉的水路长:(5x+x)×2=12x(个单位);木筏从沙市顺流而下到武汉所需天数为:12x÷x=12(天)。故本题正确答案为B。
71、有一种数叫做完全数,它恰巧等于除去它本身以外的一切因数的和,如6是因数1+2+3的和。请问在20到30之间,这样的完全数是哪个?_____
A: 24B: 26C: 27D: 28
参考答案: D 本题解释:参考答案题目详解:根据题意,采用代入法对各项分析,只有28=1+2+4+7+14,其他选项都不符合题意。所以,选D。考查点:数量关系>数学运算>计算问题之算式计算>定义新运算问题
72、某服装店老板去采购一批商品,其所带的钱如果只买某种进口上衣可买120件,如果只买某种普通上衣则可买180件。现在知道,最后该老板买的进口上衣和普通上衣的数量相同,问他最多可以各买多少件?_____
A: 70件B: 72件C: 74件D: 75件
参考答案: B 本题解释:正确答案是B考点和差倍比问题解析根据题意,设钱数为360元,则进口上衣3元,普通上衣2元,因此可以各买360÷(3+2)=72件。
73、把一根圆木锯成3段需要8分钟,如果把同样的圆木锯成9段需要多少分钟?_____
A: 24分钟B: 27分钟C: 32分钟D: 36分钟
参考答案: C 本题解释:正确答案是C考点计数模型问题解析圆木锯成三段有2个切口,2个切口需要用时8分钟,锯成9段有8个切口,则8个切口需要用时8÷2×8=32(分钟),故正确答案为C。
74、小红把平时节省下来的全部五分硬币先围成一个正三角形,正好用完,后来又改围成一个正方形,也正好用完。如果正方形的每条边比三角形的每条边少用5枚硬币,则小红所有五分硬币的总价值是_____。
A: 1元 B: 2元 C: 3元 D: 4元
参考答案: C 本题解释:C。【解析】设三角形每条边X,正方形为Y,那么Y=X-5,同时由于硬币个数相同,那么3X=4Y,如此可以算出X=20,则硬币共有3×20=60个,硬币为5分硬币,那么总价值是5×60=300(分),得出结果。
75、在太阳光照射下,一个高为3米的竹杆其影子长为米,则一个半径为1米的球其影子最长为:
A: B:
C:
D:
参考答案: 本题解释:参考答案:C题目详解:根据题意:AB是竹竿的长度为3米,BC是影子的长度为米;由tanA=a/b可以计算光线与影子形成的角度∠ACB:由tan∠ACB=a/b,a=AB=3;b=BC=
得,tan∠ACB=a/b=
=
,则∠ACB=60°半径为1米的球体形成的影子的最远点是光线与球体相切点处形成的影子;假设光线与半径为1米的球体相切于E点,则F点是球体形成影子的最远点,即DF为球体形成的影子。作CM⊥EF于M:则有:CM=OE=1。在直角三角形△CFM里:∠CFM=∠ACB=60°。由sinA=a/c,a=CM=1,∠A=∠CFM=60°;得CF=c=a/sinA=1/sin60°=1÷
=
;在直角三角形△OCD里:∠OCD=∠ACB=60°。由tanA=a/b,a=OD=1,∠A=∠OCD=60°得,DC=b=a/tanA=1/tan60°=1÷
=
,DF=DC+CF=
+
=
;所以,选C。考查点:数量关系>数学运算>几何问题>平面几何问题>与线、角相关问题(平面)
76、2004年2月28日是星期六,那么2010年2月28日是_____。
A: 星期一B: 星期三C: 星期五D: 星期日
参考答案: D 本题解释:正确答案是D考点星期日期问题解析2004年2月28日到2010年2月28日之间隔了6年,一年365天是52个星期加1天,因此过6年的星期变化相当于过6天。而2004年、2008年是闰年,要各多加1天。因此,2010年2月28日的星期数相当于从周六开始向后再过8天,应为星期日。故正确答案为D。
77、有10粒糖,如果每天至少吃一粒(多不限),吃完为止,求有多少种不同吃法?_____
A: 144B: 217C: 512D: 640
参考答案: C 本题解释:参考答案:C题目详解:应用插板法:将10粒糖并列一排放置,中间形成9个空位,在这9个空位中任意插入0~9个隔板,(即表示10粒糖在1到10天吃完);故共有;即有512种吃法。所以,选C。考查点:数量关系>数学运算>排列组合问题>常规排列组合问题
78、8个甲级队应邀参加比赛,先平均分成两组,分别进行单循环赛,每组决出前两名,再由每组的第一名,另一组的第二名进行淘汰赛,获胜者角逐冠、亚军,败者角逐第3、4名,整个赛程的比赛场数是_____。
A: 16B: 15C: 1D: 13
参考答案: A 本题解释:正确答案是A考点排列组合问题解析标签分类分步
79、某仪仗队排成方阵,第一次排列若干人,结果多余10人,第二次比第一次每排增加3人结果缺少29人,仪仗队总人数是_____。
A: 400B: 450C: 500D: 600
参考答案: A 本题解释:【答案】A。解析:设第一次每排x人,共Y排,可列方程xy+10=(x+3)×y-29解得y=13,选项中减10后能被13整除的只有400,故选择A。
80、有一个长方体容器,长40厘米,宽30厘米,高10厘米,里面的水深6厘米(最大面为底面)。如果把这个容器盖紧,再竖起来(最小面为底面),则里面的水深是多少厘米_____
A: 15厘米 B: 18厘米 C: 24厘米 D: 30厘米
参考答案: C 本题解释:【解析】C。盖紧后竖起前水的底面积为40×30平方厘米,深为6厘米,则体积为40×30×6立方厘米。盖紧后竖起水的体积不变,底面积变成了30×10平方厘米,此时水深应为。
81、有AB两个电脑显示器,已知旧显示器A的宽高比是4:3,新显示器B的宽高比例是16:9,若两个显示器面积相同,问B的宽与A的宽度比是_____。
A: AB: BC: CD: D
参考答案: C 本题解释:正确答案是C考点和差倍比问题解析
82、一个四位数”□□□□”分别能被15、12和10除尽,且被这三个数除尽时所得的三个商的和为1365,问四位数”□□□□”中四个数字的和是_____。
A: 17B: 16C: 15D: 14
参考答案: C 本题解释:正确答案是C考点计算问题解析列方程可解得,设4位数为X,有X/15+X/12+X/10=1365,解得X=5460,4数字和为15。故正确答案为C。秒杀技由题意可知,该四位数能被3整除,则其所有数字之和能被3整除,仅C符合。标签数字特性
83、一列队伍沿直线匀速前进,某时刻一传令兵从队尾出发,匀速向队首前进传送命令,他到达队首后马上原速返回,当他返回队尾时,队伍行进的距离正好与整列队伍的长度相等。问传令兵从出发到最后到达队尾所行走的整个路程是队伍长度的多少倍?_____
A: 0.5 B: 1.5C: 1 D: 2
参考答案: C 本题解释:【答案】C。解析:从队尾到队首,这是一个追及过程,追及的路程等于队伍的长。从队首返回队尾,这是一个相遇过程,返回队尾所行的路程都等于队伍的长。
84、_____
A: AB: BC: CD: D
参考答案: B 本题解释:正确答案是B考点计算问题解析根据尾数法,可知最后两位(即小数点之后)为:01+09+16+64=90,故正确答案为B。
85、(2009吉林)A、B两座城市距离:300千米,甲乙两人分别从A、B两座城市同一时间出发,已知甲和乙的速度都是50km/h,苍蝇的速度是100km/h,苍蝇和甲一起出发,然后遇到乙再飞回来,遇到甲再回去,直到甲乙相遇才停下来,请问苍蝇飞的距离是_____km?
A: 100B: 200C: 300D: 400
参考答案: C 本题解释:参考答案:C题目详解:根据题意,可知:甲乙相遇的时间为:(小时),苍蝇飞行距离
(千米)。所以,选C。考查点:数量关系>数学运算>行程问题>相遇问题>直线相遇问题>直线多次相遇问题
86、科考队员在冰面上钻孔获取样本,测量不同空心之间的距离,获得的部分数据分别为1米、3米、6米、12米、24米、48米。问科考队员至少钻了多少个孔?_____
A: 4B: 5C: 6D: 7
参考答案: D 本题解释:正确答案是D考点几何问题解析所测距离组成一个数列1、3、6、12、24、48,易知该数列中任一项均大于其前面所有项之和,故这6条线段不可能组成封闭回路,即6条线段最少7个端点,至少钻7个孔。故正确答案为D。
87、一种挥发性药水,原来有一整瓶,第二天挥发后变为原来的1/2;第三天变为第二天的2/3;第四天变为第三天的3/4,请问第几天时药水还剩下1/30瓶?_____
A: 75天B: 30天C: 12天D: 100天
参考答案: B 本题解释:正确答案是B考点浓度问题解析第二天剩余1/2瓶,第三天剩余1/2×2/3=1/3瓶,第四天剩余1/3×3/4=1/4瓶,……,以此类推,第30天时剩余1/29×29/30=1/30瓶。故正确答案为B。标签分类分步
88、某单位招待所有若干间房间,现要安排一支考察队的队员住宿,若每问住3人,则有2人无房可住;若每问住4人,则有一间房间不空也不满,则该招待所的房间最多有_____。
A: 5间B: 4间C: 6间D: 7间
参考答案: A 本题解释:A。
89、某商店有126箱苹果,每箱至少有120个苹果,至多有144个苹果。现将苹果个数相同的箱子算作一类。设其中箱子数最多的一类有个箱子,则
的最小值为多少?_____
A: 4B: 5C: 6D: 7
参考答案: C 本题解释:参考答案:C题目详解:解法一:将苹果个数相同的箱子算成一类,那么每一类都可以看成一个“抽屉”。这样可以构造出144-120+1=25个抽屉,又由于:126÷25=5…1,由抽屉原理2可以得到,。解法二:每箱数目是120—144,共有25种可能。又因126=5×25+1,故至少有5+1=6(个)装相同苹果数的箱子,即
最小为6.考查点:数量关系>数学运算>抽屉原理问题>抽屉原理2
90、两个数的差是2345,两数相除的商是8,求这两个数之和_____。
A: 2353B: 2896C: 3015D: 3456
参考答案: C 本题解释:C[解析]根据题意,两数相除商是8,则说明被除数是除数的8倍,两数相减结果2345应为除数的7倍,从而求得除数2345÷7=335,被除数为335×8=2680,两数和为2680+335=3015,答案为C。
91、甲、乙两人同地同向直线行走,其速度分别为7千米/时和5千米/时。乙先走2小时后甲才开始走,则甲追上乙需_____。
A: 4小时B: 5小时C: 6小时D: 7小时
参考答案: B 本题解释:正确答案是B考点行程问题解析解析1:简单追及问题,甲追上乙需2×5÷(7-5)=5小时。故正确答案为B。解析2:甲追上乙时,甲、乙所走路程相同。设甲X小时追上乙,则7X=5(X+2),解得X=5。故正确答案为B。
92、某工厂有学徒工、熟练工、技师共80名,每天完成480件产品的任务。已知每天学徒工完成2件,熟练工完成6件,技师完成7件,且学徒工和熟练工完成的量相等,则该厂技师人数是熟练工人数的_____倍。
A: 6B: 8C: 10D: 12
参考答案: D 本题解释:列方程组。设学徒工、熟练工、技师分别有x,y,z名。则有:X+Y+Z=80,2X-96Y+7Z=48012X=6Y得到:X=15,y=5,Z=60,所以Z:Y=60:5=12。选D。
93、甲乙同时从A 地步行出发往B 地,甲60 米/分钟,乙90 米/分钟,乙到达B 地折返与甲相遇时,甲还需再走3 分钟才到达B 地,求AB 两地距离?_____
A: 1350B: 1080C: 900D: 750
参考答案: C 本题解释: 【解析】甲需要多走3分钟到B地,3×60=180米,速度比是2:3,所以路程比也是2:3,设全长X米,则(X-180)/(X+180)=2/3,求出X=900,实际也是选个180倍数的选项,排除AD。
94、的值是_____
A: B:
C:
D:
参考答案: C 本题解释:参考答案:C题目详解:本题可以拆项化简,选择C。考查点:数量关系>数学运算>计算问题之算式计算>数列问题>数列求和>单一数列求和>分式数列求和
95、某单位订阅了30份学习材料发放给3个部门,每个部门至少发放9份材料。问一共有多少种不同的发放方法?_____
A: 7B: 9C: 10D: 12
参考答案: C 本题解释:正确答案是C考点排列组合问题解析因此正确答案为C。
96、某三年制普通初中连续六年在校生人数为X1、X2、X3、X4、X5、X6,假设该校所有学生都能顺利毕业,那么前三年的入学学生总数与后三年的入学学生总数之差为_____。
A: 42B: 48C: 50D: 60
参考答案: C 本题解释:正确答案是D考点和差倍比问题解析设原来B桶有x公斤水,A桶有(108-x)公斤水,可得[x+(108-x)×1/4]×(1-1/4)=108÷2,解得x=60。故正确答案为D。秒杀技观察选项设置,B+D=108,可初步确定答案为48或60;而A桶显然不能是60,因为60的四分之一为15,第二次取水会出现小数,此时二者必然不相等,故可确定答案为D。
97、将25台笔记本电脑奖励给不同的单位,每个单位奖励的电脑数量均不等,最多可以奖励几个单位?_____
A: 5B: 6C: 7D: 8
参考答案: B 本题解释:正确答案是B考点数列问题解析解析1:从1台开始算起,1+2+3+4+5+6=21,还多4台,不能再单独奖励给一个单位,只能分到后4个单位,因此最多可以奖励6个单位,故正确答案为B。
98、某高校2006年度毕业学生7650名,比上年度增长2%,其中本科生毕业数量比上年度减少2%,而研究生毕业数量比上年度增加10%,那么,这所高校今年毕业的本科生有_____。
A: 3920人B: 4410人C: 4900人D: 5490人
参考答案: C 本题解释:正确答案是C考点和差倍比问题解析假设去年研究生毕业数为A,本科生毕业数为B,那么今年研究生毕业数为1.1A,本科生毕业数为0.98B。由题意知:A+B=7650÷(1+2%),1.1A+0.98B=7650,解得B=5000人。则今年本科生毕业数量为5000×0.98=4900人,故正确答案为C。秒杀技由“本科生比上年度减少2%”可知“今年本科生数=98%×去年本科生数”(注意98%是百分数,本质上也是个分数),所以今年本科生应能够被49整除。由“研究生毕业数量比上年增加10%”知“今年研究生数=110%×去年研究生数”,所以今年研究生数应能够被11整除,据此两条得出正确答案为C。
99、有三个居委会的居民共订600份《华西都市报》,每个居委会至少订199份,最多订201份,则不同的订报方式有_____种。
A: 3B: 5C: 6D: 7
参考答案: D 本题解释:【答案】D。解析:三个居委会分别订200、200、200和199、200、201两种情况,前一种方法数为1,后一种方法 数为3×2×1=6,1+6=7,故正确答案为D。
100、某企业组织80名员工一起去划船,每条船乘客定员12人,则该企业最少要租船_____条。
A: 10B: 9C: 8D: 7
参考答案: D 本题解释:正确答案是D考点趣味数学问题解析80÷12=6……8,6条船不够,至少7条。故正确答案为D。